Nov. 9, 2009
Chem. 2430
Problem Set 2, Nov. 16, 2009.

1) In class we studied quantum dynamics according to the two-level system (TLS):

$$
i \hbar\binom{\dot{c}_{1}(t)}{\dot{c}_{2}(t)}=\boldsymbol{H}\binom{c_{1}(t)}{c_{2}(t)} ; \boldsymbol{H} \equiv\left[\begin{array}{cc}
E_{1} & \Delta \tag{1}\\
\Delta & E_{2}
\end{array}\right]
$$

a) Show that the substitution $\binom{c_{1}(t)}{c_{2}(t)}=\exp \left[-i\left(E_{1}+E_{2}\right) t / 2 \hbar\right]\binom{b_{1}(t)}{b_{2}(t)}$ converts Eq. [1] into the equivalent form:

$$
i \hbar\binom{\dot{b}_{1}(t)}{\dot{b_{2}}(t)}=\tilde{\boldsymbol{H}}\binom{b_{1}(t)}{b_{2}(t)} ; \tilde{\boldsymbol{H}} \equiv\left[\begin{array}{cc}
\varepsilon & \Delta \tag{2}\\
\Delta & -\varepsilon
\end{array}\right]
$$

with $\varepsilon=\left(E_{1}-E_{2}\right) / 2$.
b) Starting from Eq. [2], show that for the initial conditions $c_{1}(0)=1, c_{2}(0)=0$, then:

$$
\left|c_{1}(t)\right|^{2}=\left|b_{1}(t)\right|^{2}=1-\frac{\Delta^{2}}{\Delta^{2}+\varepsilon^{2}} \sin ^{2}\left(\sqrt{\varepsilon^{2}+\Delta^{2}} t / \hbar\right)
$$

2) In class we studied the motion of an optically driven TLS, governed by the matrix Schrödinger Eq.:

$$
i \hbar\binom{\dot{c}_{1}(t)}{\dot{c}_{2}(t)}=\boldsymbol{H}(t)\binom{c_{1}(t)}{c_{2}(t)} ; \boldsymbol{H}(t) \equiv\left[\begin{array}{cc}
E_{1} & \mu_{0} \varepsilon_{0} \cos \left(\omega_{0} t\right) \tag{3}\\
\mu_{0} \varepsilon_{0} \cos \left(\omega_{0} t\right) & E_{2}
\end{array}\right]
$$

We developed an approximate solution to these equations of motion in the case of large lightsource frequency ω_{0} and small detuning of the light source from resonance between molecular energy levels E_{1}, E_{2}. We called the result of this analysis the Rotating Wave Approximation (RWA). For the case of zero detuning, i.e., $\hbar \omega_{0}=E_{2}-E_{1}$, probability shuttles back and forth completely between the two basis states in a sinusoidal fashion. Given initial preparation in state 1, i.e., $c_{1}(0)=1, c_{2}(0)=0$, what is the earliest time that the probability to find the system in state 2 is unity, according to the RWA?
3) The electric dipole moment of a system comprised of a set of point charges is $\vec{\mu}=\sum_{\alpha} q_{\alpha} \vec{r}_{\alpha}$, where $q_{\alpha}, \vec{r}_{\alpha}$ are the charge and position of charge α. If we specialize to a single charge moving in one dimension (say, the x-direction), then $\mu=q x$.

Consider a one dimensional harmonic oscillator with charge q and mass m moving in the potential energy well $V(x)=\frac{1}{2} \kappa x^{2}$, where $\kappa>0$ is the constant characterizing the restoring force. Calculate the dipole operator matrix elements:
a) $\int_{-\infty}^{\infty} d x \phi_{0}(x) \hat{\mu} \phi_{0}(x)$
b) $\int_{-\infty}^{\infty} d x \phi_{0}(x) \hat{\mu} \phi_{1}(x) \quad$,
where $\phi_{n}(x)$ is the standard unit-normalized harmonic oscillator energy eigenfunction corresponding to energy eigenvalue $E_{n}=\hbar \sqrt{\frac{\kappa}{m}}(n+1 / 2)$.

