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Nov. 9, 2009 
Chem. 2430 

Problem Set 2, Nov. 16, 2009. 
 

 
 
1) In class we studied quantum dynamics according to the two-level system (TLS): 
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equivalent form: 
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with  1 2( ) / 2E Eε = − .   
 
b)  Starting from Eq. [2], show that for the initial conditions 1 2(0) 1 , (0) 0c c= = , then: 
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2) In class we studied the motion of an optically driven TLS, governed by the matrix 
Schrödinger Eq.: 
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We developed an approximate solution to these equations of motion in the case of large light-
source frequency 0ω  and small detuning of the light source from resonance between molecular 
energy levels 1 2,E E .  We called the result of this analysis the Rotating Wave Approximation 
(RWA).   For the case of zero detuning, i.e.,  0 2 1E Eω = − , probability shuttles back and forth 
completely between the two basis states in a sinusoidal fashion.  Given initial preparation in state 
1, i.e.,  1 2(0) 1 , (0) 0c c= = , what is the earliest time that the probability to find the system in 
state 2 is unity, according to the RWA? 
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3) The electric dipole moment of a system comprised of a set of point charges is q rα α
α

μ = ∑ , 

where ,q rα α  are the charge and position of charge α .  If we specialize to a single charge 
moving in one dimension (say, the x-direction), then qxμ = . 
 
Consider a one dimensional harmonic oscillator with charge q  and mass m  moving in the 

potential energy well 21( )
2

V x xκ= , where 0κ > is the constant characterizing the restoring 

force.   Calculate the dipole operator matrix elements: 
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where ( )n xφ is the standard unit-normalized harmonic oscillator energy eigenfunction 

corresponding to energy eigenvalue ( 1/ 2)nE n
m
κ

= + . 

 
 
 
 


