Chapter 3 The H-Atom

- last example we will solve analytically
- foundation of electronic structure theory
- fixed nucleus of charge +1 e electron charge -1 e

$$
\hat{H}(x, y, z)=-\frac{\hbar^{2}}{2 m_{e}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0} r}, \quad r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Go to spherical coordinates

$$
-\frac{\hbar^{2}}{2 m_{e}}\left[\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r \psi+\frac{1}{r^{2}} \Lambda^{2} \psi\right]-\frac{e^{2} \psi}{4 \pi \varepsilon_{0} r}=E \psi
$$

This equation separates into a radial equation and an equation involving the angular part, which we have already solved

Radial equation for each ℓ :

$$
(-\frac{\hbar^{2}}{2 m_{e} r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+\frac{\hbar^{2} \ell(\ell+1)}{\underbrace{2 m_{e} r^{2}}_{\mathrm{V}_{\text {eff }}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}}) R(r)=E R(r)
$$

This equation gives a new quantum number
 n, in addition to ℓ and m.

The solutions are of the form of exponentials times associated Laguerre polynomials
-Energy levels $\quad E_{n}=\frac{-m_{e} e^{4}}{8 \varepsilon_{0}{ }^{2} h^{2}} \frac{1}{n^{2}}=-\frac{13.6 e \mathrm{~V}}{n^{2}}$
Note that the ℓ and m quantum numbers do not appear in the energy expression

$\mathrm{n}=1$ and 2 levels of the H atom

$\mathrm{n}=3$ levels of the H atom.

$$
\begin{array}{ll}
n=3, l=0, m_{l}=0 & \psi_{300}(r)=\frac{1}{81 \sqrt{3 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(27-18 \frac{r}{a_{0}}+2 \frac{r^{2}}{a_{0}^{2}}\right) e^{-r / 3 a_{0}} \\
n=3, l=1, m_{l}=0 & \psi_{310}(r, \theta, \phi)=\frac{1}{81}\left(\frac{2}{\pi}\right)^{1 / 2}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(6 \frac{r}{a_{0}}-\frac{r^{2}}{a_{0}^{2}}\right) e^{-r / 3 a_{0}} \cos \theta \\
n=3, l=1, m_{l}= \pm 1 & \psi_{31 \pm 1}(r, \theta, \phi)=\frac{1}{81 \sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(6 \frac{r}{a_{0}}-\frac{r^{2}}{a_{0}^{2}}\right) e^{-r / 3 a_{0}} \sin \theta e^{ \pm i \phi} \\
n=3, l=2, m_{l}=0 & \psi_{320}(r, \theta, \phi)=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}\left(3 \cos ^{2} \theta-1\right) \\
n=3, l=2, m_{l}= \pm 1 & \psi_{32 \pm 1}(r, \theta, \phi)=\frac{1}{81 \sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}} \sin \theta \cos \theta e^{ \pm i \phi} \\
n=3, l=2, m_{l}= \pm 2 & \psi_{32 \pm 2}(r, \theta, \phi)=\frac{1}{162 \sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}} \sin ^{2} \theta e^{ \pm 2 i \phi}
\end{array}
$$

1 Rydberg = $0.5 \mathrm{au}=$ 13.605 eV

- Energy levels $\quad E_{n}=\frac{-m_{e} e^{4}}{8 \varepsilon_{0} h^{2}} \frac{1}{n^{2}}=-\frac{13.6 e V}{n^{2}}$

Energy is independent of ℓ, m

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& \ell=0, \ldots, n-1 \\
& m=-\ell, \ldots, \ell \\
& 1 s, 2 s, 2 p_{x} 2 p_{y}, 2 p_{z}
\end{aligned}
$$

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

- Wavefunctions = Atomic orbitals
$\psi(r, \theta, \varphi) \propto Y_{\ell}^{m}(\theta, \varphi) \cdot e^{-r / n a_{0}} \bullet($ polynomial in $r)$
- Spectroscopy

$$
\begin{aligned}
& \Delta n: \text { any } \\
& \Delta \ell= \pm 1 \\
& \Delta m=0, \pm 1
\end{aligned}
$$

Note $\mathrm{x}, \mathrm{y}, \mathrm{z}$ have same angular dependence as p_{x}, p_{y}, and p_{z}. This is why $s \rightarrow p$ is allowed.

$$
\begin{aligned}
& 800 \\
& 80 \\
& 888
\end{aligned}
$$

Normalization

$$
\begin{aligned}
& N^{2} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \int_{0}^{\infty}\left(e^{-r / 2 a_{0}}\right)^{2} r^{2} d r=1 \\
& \quad N=\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2}
\end{aligned}
$$

$\psi^{2}=$ probability density
$r^{2}[R(r)]^{2}=$ radial distribution function
probability of being found in a shell of radius r of thickness $d r$
ϕ and θ have been integrated out

Maximum in radial distribution function of the 2 s orbital?

$$
\begin{aligned}
& P(r)=\frac{1}{32 \pi}\left(\frac{1}{a_{0}}\right)^{3} r^{2}\left(2-\frac{r}{a_{0}}\right)^{2} e^{-r / a_{0}} \\
& \frac{d P}{d r}=\frac{r}{32 \pi a_{0}^{6}}\left(8 a_{0}^{3}-16 a_{0}^{2} r+8 a_{0} r^{2}-r^{3}\right) e^{-r / a_{0}}
\end{aligned}
$$

The orbital plots provide some justification to the use of shell models.

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

$$
\begin{aligned}
& \langle r\rangle_{n \ell m_{e}}=\frac{n^{2} a_{0}}{z}\left\{1+\frac{1}{2}\left(1-\frac{\ell(\ell+1)}{h^{2}}\right)\right\} \\
& \left\langle\frac{1}{r}\right\rangle=\frac{z}{a_{0} n^{2}} \\
& \quad \uparrow \\
& \quad \text { all orbitals of a shell have the same PE }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle E_{k}\right\rangle=-\frac{1}{2}\left\langle E_{p}\right\rangle \\
& g_{n}=\sum_{\ell=0}^{n-1}(2 \ell+1)=n^{2}
\end{aligned}
$$

H atom has a hidden symmetry

H atom

$$
\begin{aligned}
& E=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2} n^{2}}=-\frac{1}{2} \frac{m_{e} e^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2} n^{2} \hbar^{2}}=\frac{-1}{2 n^{2}} \text { in a. u. } \\
& a_{0}=\frac{\varepsilon_{0} h^{2}}{\pi m_{e} e^{2}}=0.529 \AA
\end{aligned}
$$

Note: We really should be using μ instead of m_{e}.
$\mathrm{H}, \mathrm{D}, \mathrm{T}$ have slightly different μ and thus can be distinguished spectroscopically.
Treatment of H atom applies to $\mathrm{He}^{+}, \mathrm{Li}^{2+}, \ldots \mathrm{U}^{91+}$

