Chapter 2

Free particle: $\quad \frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi$

($\mathrm{V} \equiv 0$)		$e^{ \pm i k x}=\cos k x \pm i \sin k x$
$\psi_{+}=A_{+} e^{i k x}$ traveling wave		$\left\|\left\|e^{ \pm i k x}\right\|=1\right.$
$\psi_{-}=A_{-} e^{-i k x}$ traveling wave		$\begin{aligned} & p=k \hbar, \quad \lambda=2 \pi / k \\ & p=\frac{h}{\lambda} \end{aligned}$

Note: x can take on any value, but p_{x} is either $\hbar k$ or $-\hbar k$ (consistent with uncertainty principle)

$$
p(x) d x=\frac{\psi^{*} \psi}{\int_{-L}^{L} \psi^{*} \psi d x}=\frac{d x}{2 L} \text { independent of } \mathrm{x} \text {. }
$$

Equal probability of finding the particle anywhere

Particle incident on a step potential

$$
\begin{array}{ll}
I & \psi_{I}=A e^{i k x}+B e^{-i k x} \\
& k=\sqrt{2 m E / \hbar^{2}} \\
& \\
\text { II } & \psi_{I I}=C e^{i k^{\prime} x}+D e^{-i k^{\prime} x} \\
& k^{\prime}=\sqrt{2 m(E-V) / \hbar^{2}}
\end{array}
$$

$$
E<V
$$

$$
\begin{aligned}
& k^{\prime}=i k \quad(\kappa \text { real }) \\
& \psi_{I I}=C e^{-k x}+D e^{k x}
\end{aligned}
$$

For proper wavefunction, $\mathrm{D}=0$
ψ exponentially decaying in region II

$$
\begin{aligned}
& H_{I}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \\
& H_{I I}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{I}(0)=\psi_{I I}(0) \Rightarrow A+B=C \\
& \psi_{I}^{\prime}(0)=\psi_{I I}^{\prime}(0) \Rightarrow A i k-B i k=-C k
\end{aligned}
$$

If $E>V$

$$
\text { Transmission, } \mathrm{T}=\frac{\text { \# particles transmitted }}{\# \text { particles incident }} \quad R+T=1
$$

Reflection, $R=\frac{\text { \# particles reflected }}{\text { \# particles incident }}$
$T=\frac{4 k k^{\prime}}{\left(k+k^{\prime}\right)^{2}}=\frac{|C|^{2}}{|A|^{2}} \frac{k^{\prime}}{k}$
$R=1-\frac{4 k k^{\prime}}{\left(k+k^{\prime}\right)^{2}}=\frac{|B|^{2}}{|A|^{2}}$

Barrier of finite width

$$
\begin{aligned}
& \psi_{I}=A e^{i k x}+B e^{-i k x}, \quad k \hbar=\sqrt{2 m E} \\
& \psi_{I I}=A^{\prime} e^{i^{\prime} x}+B^{\prime} e^{-i k^{\prime} x}, \quad k^{\prime} h=\sqrt{2 m(E-V)} \\
& \psi_{I I I}=A^{\prime \prime} e^{i k^{\prime \prime} x}+B^{\prime \prime} e^{-i k^{\prime \prime} x}, \quad k^{\prime \prime} \hbar=\sqrt{2 m E}
\end{aligned}
$$

$E<V$, assume particle incident from left

$$
\begin{gathered}
R=\frac{|B|^{2}}{|A|^{2}}, T=\frac{\left|A^{\prime \prime}\right|^{2}}{|A|^{2}}=\frac{1}{1+\left(e^{\varepsilon L}-e^{-k l}\right) /\left[16 \frac{E}{V}\left(1-\frac{E}{V}\right)\right]} \\
E \ll V \quad T \sim \frac{1}{1+\frac{e^{\varepsilon L}-e^{-k L}}{16} \quad k^{\prime}=i k} \\
T \sim e^{-2 L \sqrt{2 m\left(V_{o}-E\right) / \hbar^{2}}}
\end{gathered}
$$

resonances: particle can escape by tunneling

$$
\text { bound } \longrightarrow
$$

Examples: • radioactive decay

- temporary anions: $\mathrm{Be}^{-}, \mathrm{N}_{2}{ }^{-}$, benzene ${ }^{-}$ electron falls off in $\approx 10^{-14} \mathrm{sec}$

V (r)

How can one measure something with such a short lifetime?

Scanning tunneling microscopy (STM) - invented ~ 20 years ago at IBM Research Labs, Zürich

$22 \times 22 \mathrm{~nm}^{2}$

Apply voltage - measure current
often run so that as the tip is scanned over the surface, the height is varied so as to keep
the current constant
the tip does not actually touch the surface
electrons tunnel between tip and surface

Water chains on the $\mathrm{Cu}(110)$
surface, from Yates et al.

Particle the 1-D box

particle cannot escape from the box Inside the box $\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi=E \psi$

Wavefunction inside box is:

$$
\psi(x)=D \sin k x+C \cos k x
$$

$$
\psi(0)=0=D \sin k x+C \cos k x \Rightarrow C=0
$$

$$
\psi(x)=D \sin k x
$$

Conditions
$\psi(0)=\psi(L)=0$
$\psi(L)=0=D \sin k L \Rightarrow k L=n \pi, \quad n=1,2,3, \ldots$
$\psi_{n}(x)=D \sin \frac{n \pi x}{L}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \longleftarrow \quad$ normalized

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin \left(\frac{n \pi x}{L}\right)=E \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{-\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{L^{2}}(-1)=E \\
& E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}, \quad n=1,2,3 \ldots
\end{aligned}
$$

minimum energy $=\frac{h^{2}}{8 m L^{2}}=$ zero-point energy
Consistent with the uncertainty principle.

Because x is constrained to be between 0 and L , the momentum cannot be zero. $\Rightarrow E \neq 0$.

$$
\begin{aligned}
& \langle x\rangle=\frac{L}{2} \text { for all } n . \\
& <p_{x}>=0 \text { for all } n .
\end{aligned}
$$

Energies get closer together as

$$
\begin{aligned}
\mathrm{m} & \rightarrow \infty \\
\mathrm{~L} & \rightarrow \infty
\end{aligned}
$$

Excitation energy

$$
\Delta E=E_{n+1}-E_{n}=\frac{h^{2}}{8 m L^{2}}(2 n+1)
$$

Can use as a crude model for understanding the electronic spectra of polyenes.

Particle in a finite box

Finite \# of bound levels
Tunneling into classically forbidden regions

