Chem. 2430, Problem Set 2, Solutions, Nov. 2009.

1) Using the defining relation between the c 's and b 's, i.e.:

$$
\binom{c_{1}(t)}{c_{2}(t)}=\exp \left[-i\left(E_{1}+E_{2}\right) t / 2 \hbar\right]\binom{b_{1}(t)}{b_{2}(t)}
$$

the first row of Eq. [1] transforms to:

$$
i \hbar\left\{\frac{-i\left(E_{1}+E_{2}\right)}{2 \hbar} \dot{c}_{1}+\exp \left[-i\left(E_{1}+E_{2}\right) t / 2 \hbar\right] \dot{b}_{1}\right\}=E_{1} c_{1}+\Delta c_{2}
$$

which is equivalent to:

$$
\begin{equation*}
i \hbar \dot{b}_{1}=\frac{\left(E_{1}-E_{2}\right)}{2} b_{1}+\Delta b_{2} \tag{A1a}
\end{equation*}
$$

The second row of Eq. [1] can be transformed similarly:

$$
i \hbar\left\{\frac{-i\left(E_{1}+E_{2}\right)}{2 \hbar} \dot{c}_{2}+\exp \left[-i\left(E_{1}+E_{2}\right) t / 2 \hbar\right] \dot{b}_{2}\right\}=\Delta c_{1}+E_{2} c_{2}
$$

or equivalently:

$$
i \hbar \dot{b_{2}}=\Delta b_{1}-\frac{\left(E_{1}-E_{2}\right)}{2} b_{2}
$$

Eqs. [A1a,b] together constitute matrix Eq. [2].
b) Let us write out the component equations of Eq. [2] (essentially as given in Eqs. [A1a,b] above:

$$
\begin{align*}
& i \hbar \dot{b}_{1}=\varepsilon b_{1}+\Delta b_{2} \tag{i}\\
& i \hbar \dot{b}_{2}=\Delta b_{1}-\varepsilon b_{2} \tag{ii}
\end{align*}
$$

The objective is to convert Eqs. (i), (ii) into a single $2^{\text {nd }}$ order linear ordinary differential equation for one of the components, say b_{1}. We start by taking another time derivative of both sides of Eq. (i), and then substitute as appropriate:

$$
\begin{aligned}
i \hbar \ddot{b}_{1} & =\varepsilon \dot{b}_{1}+\Delta \dot{b}_{2} \\
& =\varepsilon \dot{b}_{1}+\Delta\left(\Delta b_{1}-\varepsilon b_{2}\right) / i \hbar \\
& =\varepsilon \dot{b}_{1}+\Delta\left(\Delta b_{1}-\varepsilon\left[i \hbar \dot{b}_{1}-\varepsilon b_{1}\right] / \Delta\right) / i \hbar \\
& =\left(\Delta^{2}+\varepsilon^{2}\right) b_{1} / i \hbar
\end{aligned}
$$

That is:

$$
\begin{equation*}
\ddot{b}(t)_{1}=-\omega_{0}^{2} b_{1}(t) \quad ; \omega_{0}=\sqrt{\Delta^{2}+\varepsilon^{2}} / \hbar \tag{A2}
\end{equation*}
$$

The solution to the elementary differential equation [A2] is:

$$
\begin{equation*}
b_{1}(t)=A \cos \omega_{0} t+B \sin \omega_{0} t \tag{A3}
\end{equation*}
$$

where the constants of integration A, B are determined by initial conditions. We are given that $c_{1}(0)=1$ and hence $b_{1}(0)=1$. Similarly, we are given that $c_{2}(0)=0$; hence, $b_{2}(0)=0$, and thus, from equation (i) above, $\dot{b}_{1}(0)=-i \varepsilon / \hbar$. The solution of Eq. [A2], given initial conditions $b_{1}(0)=1, \dot{b}_{1}(0)=-i \varepsilon / \hbar$ is thus seen to be:

$$
b_{1}(t)=\cos \omega_{0} t-i \frac{\varepsilon}{\hbar \omega_{0}} \sin \omega_{0} t=\cos \omega_{0} t-i \frac{\varepsilon}{\sqrt{\Delta^{2}+\varepsilon^{2}}} \sin \omega_{0} t
$$

Finally, we want to compute the probability that the system will be found in state 1 at time t, which is given by:

$$
\begin{aligned}
\left|c_{1}(t)\right|^{2}=\left|b_{1}(t)\right|^{2} & =\cos ^{2} \omega_{0} t+\frac{\varepsilon^{2}}{\Delta^{2}+\varepsilon^{2}} \sin ^{2} \omega_{0} t \\
& =\left(1-\sin ^{2} \omega_{0} t\right)+\frac{\varepsilon^{2}}{\Delta^{2}+\varepsilon^{2}} \sin ^{2} \omega_{0} t \\
& =1-\frac{\Delta^{2}}{\Delta^{2}+\varepsilon^{2}} \sin ^{2} \omega_{0} t
\end{aligned}
$$

2) As discussed in class, within the RWA we map this problem to the problem of a "standard" two-level system (no time-dependent driving term), which was also featured in problem 1 above. The mapping of the off-diagonal coupling term in the two-level system (TLS) Hamiltonian was shown in class to be $\mu_{0} \varepsilon_{0} / 2 \rightarrow \Delta$. Thus, for a symmetric TLS $(\varepsilon=0)$ the time evolution of the probability for the system to be found in state 1 is given by $P_{1}(t)=\left|c_{1}(t)\right|^{2}=\cos ^{2}\left(\mu_{0} \varepsilon_{0} t / 2 \hbar\right)$. Furthermore, $P_{2}(t)=1-P_{1}(t)$. The first time, t_{0}, at which $P_{1}(t)=0$ (i.e., there is unit probability that the system will be found in state 2) is when: $\mu_{0} \varepsilon_{0} t_{0} / 2 \hbar=\pi / 2$, i.e.: $t_{0}=\pi \hbar / \mu_{0} \varepsilon_{0}$.
3) Recall the standard harmonic oscillator energy eigenfunctions:

$$
\begin{aligned}
\phi_{0}(x) & =\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right) ; \\
\phi_{1}(x) & =\frac{1}{\sqrt{2}}\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 4} H_{1}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right) \\
& =\sqrt{2} \sqrt{\frac{m \omega}{\hbar}}\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 4} x \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right)
\end{aligned}
$$

Here $\omega=\sqrt{\kappa / m}$, and H_{1} is the $1^{\text {st }}$ Hermite polynomial.
a) Consider the integral:

$$
I_{00}=\int_{-\infty}^{\infty} d x \phi_{0}(x) x \phi_{0}(x) \propto \int_{-\infty}^{\infty} d x \exp \left(-\frac{m \omega}{\hbar} x^{2}\right) x=0
$$

The important point is that this integral vanishes by symmetry (the overall integrand is antisymmetric about $\mathrm{x}=0$), so all multiplicative constants are irrelevant.

Hence: $\int_{-\infty}^{\infty} d x \phi_{0}(x) \hat{\mu} \phi_{0}(x)=q_{0} \int_{-\infty}^{\infty} d x \phi_{0}(x) x \phi_{0}(x)=0$.
b) Now consider the integral:

$$
\begin{aligned}
I_{01} & =\int_{-\infty}^{\infty} d x \phi_{0}(x) x \phi_{1}(x) \\
& =\left[\frac{2 m \omega}{\hbar}\right]^{1 / 2} \cdot\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 2} \int_{-\infty}^{\infty} d x x^{2} \exp \left(-\frac{m \omega}{\hbar} x^{2}\right)=\sqrt{\frac{\hbar}{2 m \omega}}
\end{aligned}
$$

Here the Gaussian integral identity $\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} d x x^{2} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)=\sigma^{2}$ proves useful. An important point is that this integral does not vanish by symmetry, and therefore has to be worked out carefully, including keeping track of all multiplicative constants.

Finally, we obtain: $\int_{-\infty}^{\infty} d x \phi_{0}(x) \hat{\mu} \phi_{1}(x)=q_{0} I_{01}=q_{0} \sqrt{\frac{\hbar}{2 m \omega}}$.

