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Chem. 2430, Problem Set 2,  Solutions,  Nov. 2009. 
 
 
1) Using the defining relation between the c’s and b’s, i.e.: 
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the first row of Eq. [1] transforms to: 
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which is equivalent to: 
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The second row of Eq. [1] can be transformed similarly: 
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or equivalently: 
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Eqs. [A1a,b] together constitute matrix Eq. [2]. 
 
b) Let us write out the component equations of Eq. [2] (essentially as given in Eqs. [A1a,b] 
above: 
 
                         1 1 2i b b bε= + Δ     (i) 
 
                         2 1 2i b b bε= Δ −     (ii) 
 
The objective is to convert Eqs. (i), (ii) into a single 2nd order linear ordinary differential 
equation for one of the components, say 1b .  We start by taking another time derivative of both 
sides of Eq. (i), and then substitute as appropriate: 
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That is: 
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1 0 1 0( ) ( ) ; /b t b tω ω ε= − = Δ +          [A2] 
 
The solution to the elementary differential equation [A2] is: 
 
                              1 0 0( ) cos sinb t A t B tω ω= +                     [A3] 
 
where the constants of integration A,B are determined by initial conditions.  We are given that 

1 (0) 1c =  and hence 1 (0) 1b = .  Similarly, we are given that 2 (0) 0c = ;  hence , 2 (0) 0b = , and 

thus, from equation (i) above, 1 (0) /b iε= − . The solution of Eq. [A2], given initial conditions 

1 (0) 1b = , 1 (0) /b iε= −  is thus seen to be: 
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Finally, we want to compute the probability that the system will be found in state 1 at time t, 
which is given by: 
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2)  As discussed in class, within the RWA we map this problem to the problem of a “standard” 
two-level system (no time-dependent driving term), which was also featured in problem 1 above. 
The mapping of the off-diagonal coupling term in the two-level system (TLS) Hamiltonian was 
shown in class to be 0 0 / 2μ → ΔE .  Thus, for a symmetric TLS ( 0ε = ) the time evolution of the 

probability for the system to be found in state 1 is given by 2 2
1 1 0 0( ) ( ) cos ( / 2 )P t c t tμ= = E .  

Furthermore, 2 1( ) 1 ( )P t P t= − .  The first time, 0t , at which 1 ( ) 0P t =  (i.e., there is unit probability 
that the system will be found in state 2)  is when:  0 0 0 / 2 / 2tμ π=E , i.e.:  0 0 0/t π μ= E . 
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3) Recall the standard harmonic oscillator energy eigenfunctions: 
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Here / mω κ=  , and 1H  is the 1st Hermite polynomial. 
 
a) Consider the integral: 
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The important point is that this integral vanishes by symmetry (the overall integrand is 
antisymmetric about x=0), so all multiplicative constants are irrelevant. 
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b) Now consider the integral: 
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Here the Gaussian integral identity 
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important point is that this integral does not vanish by symmetry, and therefore has to be worked 
out carefully, including keeping track of all multiplicative constants. 
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