
Solution Key, PS1 (Coalson), Chem. 2430 [Nov. 2009] 
 
 
1) a) Consider  
 

[ ][ ] [ ]22 2 2 1 2 3 4 1 2 3 4
1 1 1 1 1 1 1
4 4

S dr drχ χ φ φ φ φ φ φ φ φ= = − − + − − + = + + + =∫ ∫  

 
where we have used the orthonormality properties of 1,2,3,4φ .  We find similarly that 11 33 44 1S S S= = = .  
Next examine an off-diagonal overlap matrix element: 
 

[ ][ ] [ ]12 21 1 2 1 2 3 4 1 2 3 4
1 1 1 1 1 1 0
4 4

S S dr drχ χ φ φ φ φ φ φ φ φ= = = + + + − − + = − − + =∫ ∫  

 
We find similarly that all off-diagonal overlap elements vanish, i.e., 0 ;ijS i j= ≠  . 
 
 
b,c)  Consider: 
 

[ ] [ ] [ ]22 2 2 1 2 3 4 1 2 3 4
1 1 1ˆ ˆ 4 2
4 4 2

H dr H dr Hχ χ φ φ φ φ φ φ φ φ α β α β= = − − + − − + = − = −∫ ∫  

 
 

[ ] [ ]12 1 2 1 2 3 4 1 2 3 4
1 1 1ˆ ˆ [ 2 ]
4 4 2

H dr H dr Hχ χ φ φ φ φ φ φ φ φ β β= = + + + − − + = − = −∫ ∫  

 
 

[ ] [ ]12 1 3 1 2 3 4 1 2 3 4
1ˆ ˆ 0
4

H dr H dr Hχ χ φ φ φ φ φ φ φ φ= = + + + + − − =∫ ∫  

 
 
 
Continuing in this fashion, we obtain: 
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Finding the eigenvectors/values of the 1 2,χ χ  block gives: 
 



           (i)   
0.9731 2 51 5 ;

0.232 110 4 5
MOE cβα

⎛ ⎞ ⎛ ⎞+⎡ ⎤= + + = =⎜ ⎟ ⎜ ⎟⎣ ⎦ −− ⎝ ⎠+ ⎝ ⎠
 

 
 

               (ii)  
0.23

1 5 ;
0.9732MOE cβα
⎛ ⎞⎡ ⎤= + − = ⎜ ⎟⎣ ⎦ ⎝ ⎠

 

 
 
 
where the corresponding molecular orbitals are given by 1 1 2 2c cψ χ χ= + . 
 
Likewise, finding the eigenvectors/values of the 3 4,χ χ  block gives: 
 
 

              (iii)   
0.923

1 5 ;
0.232MOE cβα

⎛ ⎞⎡ ⎤= + − + = ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 
 

               (iv)   
0.23

1 5 ;
0.9732MOE cβα
−⎛ ⎞⎡ ⎤= + − − = ⎜ ⎟⎣ ⎦ ⎝ ⎠

 

 
 
 
where the corresponding molecular orbitals are given by 1 3 2 4c cψ χ χ= + . 
 
d) i) The four MO energy levels obtained above are identical to the energy levels obtained by direct 
processing of the Hückel Hamiltonian for butadiene, without employing symmetry adapted basis functions.  
(See Atkins, p. 270-271). 
 
   ii) Consider MO  i) above, which corresponds to the energy eigenfunction 1 20.973 0.23ψ χ χ= − .   
Invoking the definitions of 1,2χ  as linear combinations of 1,2,3,4φ  [cf. Fig. 1], we can write this wavefunction 
equivalently as: 
 
                             1 2 3 40.372 0.602 0.602 0.372ψ φ φ φ φ= + + +   ,  
 
 which is precisely the standard Hückel theory prediction for the lowest energy MO of butadiene (see 
Atkins, p. 271).  In a similar fashion, the three other MOs obtained above can also be converted exactly into 
the corresponding MOs obtained via standard Hückel theory. 
 
2) a) For 1 2β β= , Eq. [3] reduces to: 
 

            ( ) 1/2
' 2 1 cos 4 /jE j Nβ π= ± +⎡ ⎤⎣ ⎦    ;  1, 2,..., / 2j N=       [A1] 

 



This generates exactly the same N energy eigenvalues as the formula for Hückel MO energies of (single- β ) 
cyclic hydrocarbons given in class or in Atkins (p. 273).  For the case that N=8, we find numerically from 
formula [A1]: 
 
            '/ 2, 1.414, 1.414, 0, 0, 1.414, 1.414, 2jE β = − − −  
 
Note that 3 of these energy levels are doubly degenerate.  Exactly the same 8 Hückel MO energy levels are 
obtained from the standard formula for cyclic hydrocarbons. 
 
b) The range of allowed energy levels in each band is effectively determined by the allowed range of the 
cosine function.  The following boundaries are obtained: 
 

                          
 
[Note: The curves in this figure are based on the values 1 20.5, 1.0β β= − = − ] 
 
Thus: 
 
i)  for both bands, band width = 2β<  , where β<  is the lesser of 1,2β . 

 
ii) band gap = 1 22 β β− . 
 
 
 



8.3 Denote ψa by a and ψb by b.

ψ± = (a± b)/[2(1 ± S)]1/2

|ψ±|2 = (a2 + b2 ± 2ab)/2(1 ± S)

ρ± =
{
(a2 + b2 ± 2ab)/2(1 ± S)

} − 1
2
(a2 + b2)

= ±[ab− 1
2S(a2 + b2)]/(1 ± S)

S = (1 + s+ 1
3s

2)e−s, s = R/a0 = 2.46 when R = 130 pm; hence S = 0.469.

a → ψa = (1/πa3)1/2e−ra/a; b → ψb = (1/πa3)1/2e−rb/a

(1/πa3) = 2.148 × 10−6 pm−3

ρ+ = (1.462 × 10−6pm−3)
{

e−(ra+rb)/a − 0.235(e−2ra/a + e−2rb/a)
}

ρ− = −(4.045 × 10−6pm−3)
{

e−(ra+rb)/a − 0.235(e−2ra/a + e−2rb/a)
}

Note that ρ− = −2.767ρ+, so it is sufficient to plot one. We plot

ρ ≡ e−(ra+rb)/a − 0.235(e−2ra/a + e−2rb/a)

For all points on a line joining the two nuclei and lying beyond b, rb =
ra −R, we have

ρ = (es − 0.235 − 0.235e2s)e−2ra/a = −20.73e−2ra/a

For points on the same line, but lying between the nuclei, rb = R− ra, so

ρ = e−s − 0.235(e−2ra/a + e−2se2ra/a)

= 0.0854 − 0.235(e−2ra/a + 0.007 30 e2ra/a)

(Note that the two expressions for ρ are equal at ra = R.) ρ is plotted in
Fig. 1.

Exercise: Plot the difference density for points either side of R = 130 pm,
e.g. at R = 80 pm and 180 pm, and also for points in a plane bisecting
and perpendicular to the internuclear distance (with R = 130 pm).
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Figure 1: The difference density calculated in Problem 8.3.
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8.4
k = (d2E/dR2)0 = (1/a2

0)(d
2E/dx2)0 [x = R/a0]

The 0 indicates the minimum of the curve, which occurs at close to x = 2.5
[Section 8.3, Fig. 8.12 of the text].

E = E1s + j0/xa0 −
(
j′ + k′

1 + S

)
[eqn 8.25]

= E1s + j0/xa0 − (j0/xa0){1 − (1 + x)e−2x} + (j0/a0)(1 + x)e−x

1 + (1 + x+ 1
3x

2)e−x

= E1s +
j0
a0

{
1
x

− (1/x){1 − (1 + x)e−2x} + (1 + x)e−x

1 +
(
1 + x+ 1

3x
2
)
e−x

}

k =
(
j0
a3
0

)
d2

dx2 {. . .} evaluated at x = 2.5

= 0.061 884j0/a3
0 [mathematical software second derivative evaluator]

The vibrational frequency is therefore

ω =
(

2k
mH

)1/2

=
(

0.061 884e2

2πε0mHa3
0

)1/2

=
(

2 × 0.061 884h̄2

memHa4
0

)1/2

[a0 = 4πε0h̄2/mee
2] =

0.35181h̄
(memH)1/2a2

0

= 3.41 × 1014 s−1 (ν = 54.3 THz)
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8.7

ψ2(1, 2) = {1/4(1 + S)2}{a(1)a(2) + b(1)b(2) + a(1)b(2) + b(1)a(2)}2

= {1/4(1 + S)2}{a2(1)a2(2) + b2(1)b2(2) + a2(1)b2(2) + b2(1)a2(2)

+ 2a(1)b(1)a(2)b(2) + 2a2(1)a(2)b(2) + 2a(1)b(1)a2(2)

+ 2b(1)a(1)b2(2) + 2b2(1)a(2)b(2) + 2a(1)b(1)b(2)a(2)}

ρ1 ≡
∫
ψ2(1, 2)dτ2

= {1/4(1 + S)2}{2a2(1) + 2b2(1) + 2a(1)b(1)S + 2a2(1)S

+ 2a(1)b(1) + 2a(1)b(1) + 2b2(1)S + 2a(1)b(1)S}
= {1/2(1 + S)}{a2(1) + b2(1) + 2a(1)b(1)}

It follows that

δρ ≡ ρ1 − 1
2{a2(1) + b2(1)}

= {1/2(1 + S)}{a2(1) + b2(1) + 2a(1)b(1) − a2(1)(1 + S) − b2(1)(1 + S)}
= {1/2(1 + S)}{2a(1)b(1) − a2(1)S − b2(1)S}

As in Problem 8.3, outside the nuclei but on the line of centres, rb = ra−R,
whereas between the nuclei, rb = R− ra. Since

a = (1/πa3
0)

1/2e−ra/a0 ,

and likewise for b, and since

S = (1 + s+ 1
3s

2)e−s = 0.75 when R = 74 pm

we have:

Outside the nuclei:

2πa3
0δρ = {2e−2ra/a0+s − 0.75e−2ra/a0(1 + e2s)}/1.75

= −2.82e−2ra/a0

Between the nuclei:

2πa3
0δρ = {2e−s − 0.75e−2ra/a0 − 0.75e2ra/a0−2s}/1.75

= 0.282 − 0.429e−2ra/a0 − 0.026e2ra/a0

The two components (which coincide at ra = R) are plotted in Fig. 1.

Exercise: Plot the difference density for different bond lengths (e.g. R=50
pm, 100 pm).
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Figure 1: The difference density calculated in Problem 8.7.
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8.8 The question refers to ψ = c1Ψ1 + c3Ψ3 [in the notation of Section 8.5].
Therefore, noting that the spin factors are common to Ψ1 and Ψ3, so
ignoring them for the present,

ψ = c11σ(1)1σ(2) + c32σ(1)2σ(2)

= 1
2c1{a(1) + b(1)}{a(2) + b(2)} + 1

2c3{a(1) − b(1)}{a(2) − b(2)}
[a = φa, b = φb, and 1σ = (a+ b)/

√
2, 2σ = (a− b)/

√
2]

= 1
2c1{a(1)a(2) + b(1)b(2) + a(1)b(2) + b(1)a(2)}
+ 1

2c3{a(1)a(2) + b(1)b(2) − a(1)b(2) − b(1)a(2)}
= 1

2 (c1 + c3){a(1)a(2) + b(1)b(2)} + 1
2 (c1 − c3){a(1)b(2) + b(1)a(2)}

as required.
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