Chapter 13 - Electronic Structure of Polyatomics

Here we will learn:
How to use bonding/antibonding nature of orbitals to make predictions about geometries

Huckel Model
Use of symmetry to simplify matrix eigenvalue problems

Example of using bonding character to predict geometry
Is H_{3} linear or triangular?

H_{3}^{+}prefers triangular structure
H_{3}^{-}prefers linear structure
Less obvious whether H_{3} prefers linear or triangular structure
This is the simplest example of Walsh's rules.

Now consider the bending of an XH_{2} triatomic molecule
BeH_{2} : linear
CH_{2} : bent $\mathrm{OH}_{2}^{+} \quad$ almost the same geometry as OH_{2}

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Huckel model

usual - one p_{z} orbital per C atom (conjugated pi electron systems) can also apply to H_{n} clusters - one s orbital per H atom

$$
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}
$$

$$
\left(\begin{array}{lll}
H_{11}-E & H_{12} \ldots & H_{1 n} \\
H_{21} & H_{22}-E & \ldots \\
H_{2 n} \\
\ldots & \ldots & \ldots \\
H_{n 1} & H_{n 2} & H_{n n}-E
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=0 \leftarrow \text { Setting } S_{i j}=0, i \neq j
$$

Now set $H_{i i}=\alpha$

$$
\begin{aligned}
H_{i j} & =\beta \longleftarrow \text { nearest neighbor } \\
& =0 \longleftarrow \text { otherwise }
\end{aligned}
$$

Model of H_{2} or of pi orbitals of ethylene

$$
\left|\begin{array}{cc}
\alpha-E & \beta \\
\beta & \alpha-E
\end{array}\right|=0 \quad E=\alpha \pm \beta
$$

H_{3} chain: $\left|\begin{array}{ccc}\alpha-E & \beta & 0 \\ \beta & \alpha-E & \beta \\ 0 & \beta & \alpha-E\end{array}\right|=0 \rightarrow\left\{\begin{array}{llll}- & \alpha-\sqrt{2} \beta & \odot & \odot \\ + & \alpha & \odot & \bullet \\ H & \alpha+\sqrt{2} \beta & \odot & \odot\end{array}\right.$

$$
E_{\text {tot }}=3 \alpha+2 \sqrt{2} \beta
$$

H_{3} equilateral Δ

$$
\left|\begin{array}{ccc}
\alpha-E & \beta & \beta \\
\beta & \alpha-E & \beta \\
\beta & \beta & \alpha-E
\end{array}\right|=0
$$

$$
\longrightarrow(\alpha-E)^{3}-3 \beta^{2}(\alpha-E)+2 \beta^{3}
$$

$$
\longrightarrow E=\alpha+2 \beta, \quad \alpha-\beta, \quad \alpha-\beta
$$

Total energies

linear equil Δ

H_{3}^{2+}	$\alpha+1.4 \beta$	$\alpha+2 \beta$
H_{3}^{+}	$2 \alpha+2.8 \beta$	$2 \alpha+4 \beta$
H_{3}	$3 \alpha+2.8 \beta$	$3 \alpha+3 \beta$
H_{3}^{-}	$4 \alpha+2.8 \beta$	$4 \alpha+2 \beta$
$H_{3}^{=}$	$5 \alpha+1.4 \beta$	$5 \alpha+\beta$

Use of symmetry to simplify

Basic idea: make symmetry-adapted basis functions

Equilateral triangle using one symmetry plane
$\left.\begin{array}{l}\psi_{1}=\frac{1}{\sqrt{2}}\left(\varphi_{1}+\varphi_{2}\right) \\ \psi_{2}=\varphi_{3} \\ \psi_{3}=\frac{1}{\sqrt{2}}\left(\varphi_{1}-\varphi_{2}\right)\end{array}\right\} \begin{array}{ll}H_{11}=\alpha+\beta & H_{12}=\sqrt{2} \beta \\ H_{22}=\alpha & H_{13}=0 \\ H_{33}=\alpha-\beta & H_{23}=0\end{array}$
ψ_{1} and ψ_{2} same symmetry
The use of symmetry causes the matrix to become blockdiagonal

This is a consequence that only functions of the same symmetry can mix

Naphthalene

use these two symmetry planes to factorize
$10 \times 10 \longrightarrow 2(2 \times 2), 2(3 \times 3)$
Butadiene: $4 \times 4 \longrightarrow 2(2 \times 2)$
Using one symmetry operation

Connection between symmetry and degeneracies

Need 3-fold or higher symmetry for degeneracies.
$(360 / n)^{\circ}$ rotation \Rightarrow n-fold symmetry axis

$$
\begin{aligned}
& n=3 \\
& n=4 \\
& n=5 \\
& n=6
\end{aligned}
$$

all have some doubly degenerate orbitals

Inscribe polygon inside circle of radius 2β.
Read off where corners touch the circle
cylinder (infinite-fold)
Note rectangle has only 2-fold symmetry

Suppose we add another "dimension"
tetrahedron, cube, icosahedron, etc.

Note: This could be a model for tetrahedral H_{4}, the arrangement of H atoms around the C atom in methane

In methane, these orbitals of the H atoms can only mix with C orbitals of the same symmetry. What mixing is allowed?
the tetrahedron is a good example the power of using symmetry

two perpendicular symmetry planes

$$
\left[\begin{array}{ll}
x_{1}=\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{2}\right) & H_{11}=\alpha+\beta \\
H_{22}=\alpha+\beta \\
x_{2}=\frac{1}{\sqrt{2}}\left(\phi_{3}+\phi_{4}\right) & H_{12}=2 \beta
\end{array}\right\} \longrightarrow \alpha+3 \beta, \alpha-\beta
$$

Resonance delocalization energy (units of β, per π electron

Aromatic - stabilized

Antiaromatic - destabilized

$$
H=\left(\begin{array}{llllll}
\alpha & \beta & 0 & 0 & 0 & \beta \\
\beta & \alpha & \beta & 0 & 0 & 0 \\
0 & \beta & \alpha & \beta & 0 & 0 \\
0 & 0 & \beta & \alpha & \beta & 0 \\
0 & 0 & 0 & \beta & \alpha & \beta \\
\beta & 0 & 0 & 0 & \beta & \alpha
\end{array}\right)
$$

What happens to the pattern of energy levels when we go from benzene to pyridine? To fluorobenzene? To 1,3,5 trifluorobenzene?

How can we model these chemical substitutions using Huckel theory?

Emergence of band structure as chain length grows

Figure 13.18
correction

∞ \# atoms

Actually, one cannot have long range order in 1 dimension, and as a results the bonds alternative long, short, long, which opens up a band gap.

Do you see why?

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

$$
p \text {-type } \quad n \text {-type }
$$

Silicon

$$
B \quad P \quad \text { dopants }
$$

