Chapter 13 – Electronic Structure of Polyatomics

Here we will learn:

How to use bonding/antibonding nature of orbitals to make predictions about geometries

Huckel Model

Use of symmetry to simplify matrix eigenvalue problems

Example of using bonding character to predict geometry

Is H<sub>3</sub> linear or triangular?



- $H_3^+$  prefers triangular structure
- $H_3^-$  prefers linear structure

This is the simplest example of Walsh's rules.

Less obvious whether H<sub>3</sub> prefers linear or **triangular** structure Now consider the bending of an  $XH_2$  triatomic molecule

 $BeH_2$  : linear



Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

## Huckel model

usual – one  $p_z$  orbital per *C* atom (conjugated pi electron systems) can also apply to  $H_n$  clusters – one *s* orbital per *H* atom

$$\psi = c_1 \phi_1 + c_2 \phi_2 + \ldots + c_n \phi_n$$

$$\begin{pmatrix} H_{11} - E & H_{12} & \dots & H_{1n} \\ H_{21} & H_{22} - E & \dots & H_{2n} \\ \dots & \dots & \dots & \dots \\ H_{n1} & H_{n2} & H_{nn} - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = 0 \quad \leftarrow \quad \text{Setting} \quad S_{ij} = 0, \ i \neq j$$

Now set  $H_{ii} = \alpha$  $H_{ij} = \beta \quad \longleftarrow \text{ nearest neighbor}$  $= 0 \quad \longleftarrow \text{ otherwise}$ 

 $\beta$  is a negative quantity

Model of H<sub>2</sub> or of pi orbitals of ethylene

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0 \qquad E = \alpha \pm \beta$$



$$H_{3} \text{ chain:} \begin{vmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} = 0 \longrightarrow \begin{cases} ----\alpha - \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha + \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha + \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ \hline & E_{tot} = 3\alpha + 2\sqrt{2}\beta \end{cases}$$

### $H_3$ equilateral $\Delta$

$$\begin{vmatrix} \alpha - E & \beta & \beta \\ \beta & \alpha - E & \beta \\ \beta & \beta & \alpha - E \end{vmatrix} = 0$$

$$\longrightarrow (\alpha - E)^3 - 3\beta^2 (\alpha - E) + 2\beta^3$$

 $\longrightarrow E = \alpha + 2\beta, \quad \alpha - \beta, \quad \alpha - \beta$ 



### **Total energies**



## Use of symmetry to simplify

Basic idea: make symmetry-adapted basis functions

Equilateral triangle using one symmetry plane

# $\psi_1$ and $\psi_2$ same symmetry

The use of symmetry causes the matrix to become blockdiagonal

This is a consequence that only functions of the same symmetry can mix



### Connection between symmetry and degeneracies

Need 3-fold or higher symmetry for degeneracies.  $(360/n)^{\circ}$  rotation  $\Rightarrow$  n-fold symmetry axis

|                          | <i>n</i> = 3 |  | all have some<br>doubly degenerate<br>orbitals<br>$- \qquad \qquad$ |
|--------------------------|--------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <i>n</i> = 4 |  |                                                                                                                                                                                            |
|                          | <i>n</i> = 5 |  |                                                                                                                                                                                            |
|                          | <i>n</i> = 6 |  | Inscribe polygon<br>inside circle of<br>radius $2\beta$ .<br>Read off where<br>corners touch the<br>circle                                                                                 |
| cylinder (infinite-fold) |              |  |                                                                                                                                                                                            |

Note rectangle has only 2-fold symmetry

Suppose we add another "dimension"

tetrahedron, cube, icosahedron, etc.

$$\begin{pmatrix} \alpha & \beta & \beta & \beta \\ \beta & \alpha & \beta & \beta \\ \beta & \beta & \alpha & \beta \\ \beta & \beta & \beta & \alpha \end{pmatrix} = H \longrightarrow \frac{---\alpha - \beta}{-\alpha + 3\beta} \quad \textcircled{0}$$

**Note:** This could be a model for tetrahedral  $H_4$ , the arrangement of *H* atoms around the *C* atom in methane

In methane, these orbitals of the H atoms can only mix with C orbitals of the same symmetry. What mixing is allowed?

the tetrahedron is a good example the power of using symmetry



two perpendicular symmetry planes

$$\begin{bmatrix} x_1 = \frac{1}{\sqrt{2}}(\phi_1 + \phi_2) & H_{11} = \alpha + \beta \\ H_{22} = \alpha + \beta \\ H_{22} = \alpha + \beta \\ H_{12} = 2\beta \end{bmatrix} \longrightarrow \alpha + 3\beta, \quad \alpha - \beta$$
$$H_{12} = 2\beta$$
$$H_{12} = 2\beta$$
$$K_3 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_2) \qquad H_{33} = \alpha - \beta$$
$$K_4 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_3) \qquad H_{44} = \alpha - \beta$$



### Resonance delocalization energy (units of $\beta$ , per $\pi$ electron



Aromatic - stabilized Antiaromatic - destabilized

$$H = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha \end{pmatrix}$$

What happens to the pattern of energy levels when we go from benzene to pyridine? To fluorobenzene? To 1,3,5 trifluorobenzene?

How can we model these chemical substitutions using Huckel theory?

## Emergence of band structure as chain length grows



 $\infty$  # atoms

Actually, one cannot have long range order in 1 dimension, and as a results the bonds alternative long, short, long, which opens up a band gap.

Do you see why?



dopants