Chapter 13 – Electronic Structure of Polyatomics

Here we will learn:

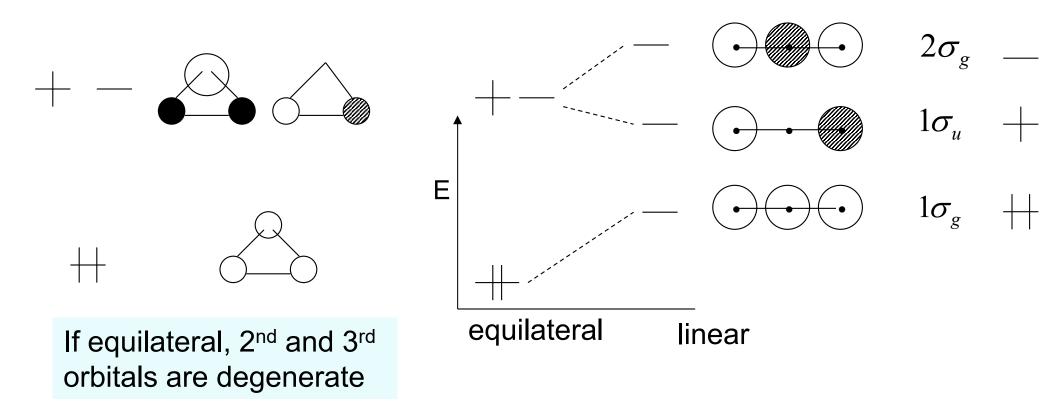
How to use bonding/antibonding nature of orbitals to make predictions about geometries

Huckel Model

Use of symmetry to simplify matrix eigenvalue problems

Example of using bonding character to predict geometry

Is H₃ linear or triangular?

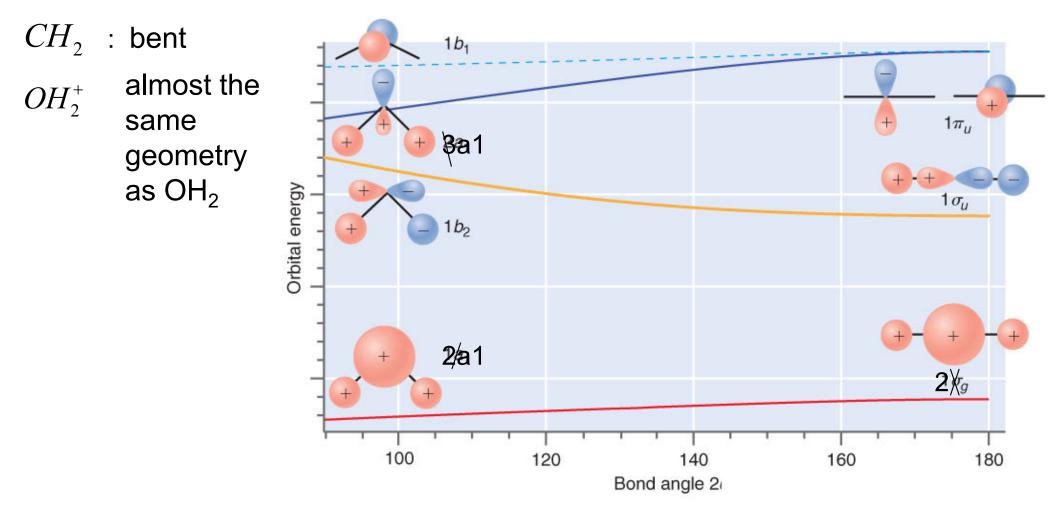


- H_3^+ prefers triangular structure
- H_3^- prefers linear structure

This is the simplest example of Walsh's rules.

Less obvious whether H₃ prefers linear or **triangular** structure Now consider the bending of an XH_2 triatomic molecule

 BeH_2 : linear



Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Huckel model

usual – one p_z orbital per *C* atom (conjugated pi electron systems) can also apply to H_n clusters – one *s* orbital per *H* atom

$$\psi = c_1 \phi_1 + c_2 \phi_2 + \ldots + c_n \phi_n$$

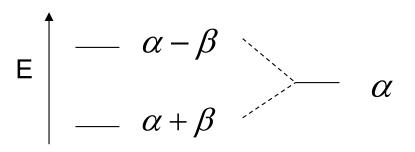
$$\begin{pmatrix} H_{11} - E & H_{12} & \dots & H_{1n} \\ H_{21} & H_{22} - E & \dots & H_{2n} \\ \dots & \dots & \dots & \dots \\ H_{n1} & H_{n2} & H_{nn} - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = 0 \quad \leftarrow \quad \text{Setting} \quad S_{ij} = 0, \ i \neq j$$

Now set $H_{ii} = \alpha$ $H_{ij} = \beta \quad \longleftarrow \text{ nearest neighbor}$ $= 0 \quad \longleftarrow \text{ otherwise}$

 β is a negative quantity

Model of H₂ or of pi orbitals of ethylene

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0 \qquad E = \alpha \pm \beta$$



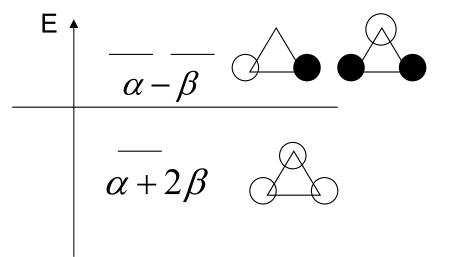
$$H_{3} \text{ chain:} \begin{vmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} = 0 \longrightarrow \begin{cases} ----\alpha - \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha + \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ ++--\alpha + \sqrt{2}\beta & \textcircled{o} & \textcircled{o} & \textcircled{o} \\ \hline & E_{tot} = 3\alpha + 2\sqrt{2}\beta \end{cases}$$

H_3 equilateral Δ

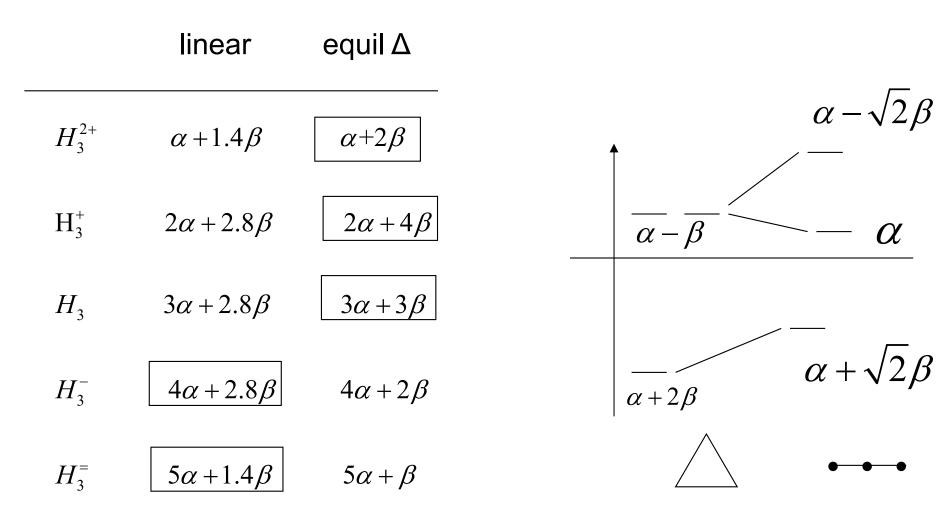
$$\begin{vmatrix} \alpha - E & \beta & \beta \\ \beta & \alpha - E & \beta \\ \beta & \beta & \alpha - E \end{vmatrix} = 0$$

$$\longrightarrow (\alpha - E)^3 - 3\beta^2 (\alpha - E) + 2\beta^3$$

 $\longrightarrow E = \alpha + 2\beta, \quad \alpha - \beta, \quad \alpha - \beta$



Total energies



Use of symmetry to simplify

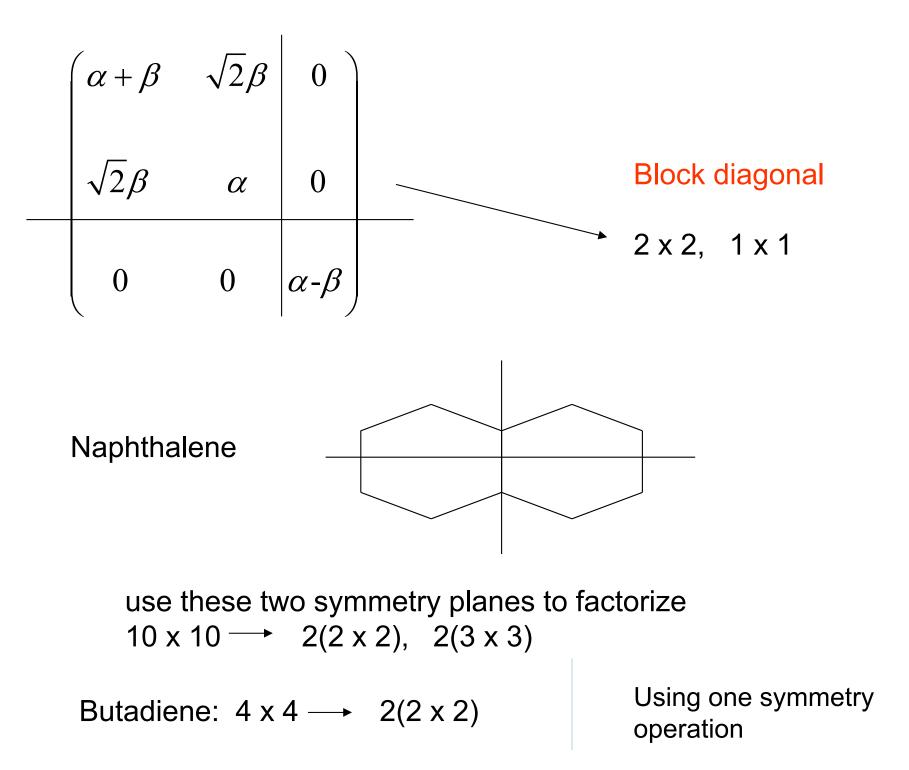
Basic idea: make symmetry-adapted basis functions

Equilateral triangle using one symmetry plane

ψ_1 and ψ_2 same symmetry

The use of symmetry causes the matrix to become blockdiagonal

This is a consequence that only functions of the same symmetry can mix



Connection between symmetry and degeneracies

Need 3-fold or higher symmetry for degeneracies. $(360/n)^{\circ}$ rotation \Rightarrow n-fold symmetry axis

	<i>n</i> = 3		all have some doubly degenerate orbitals $- \qquad \qquad$
	<i>n</i> = 4		
	<i>n</i> = 5		
	<i>n</i> = 6		Inscribe polygon inside circle of radius 2β . Read off where corners touch the circle
cylinder (infinite-fold)			

Note rectangle has only 2-fold symmetry

Suppose we add another "dimension"

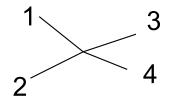
tetrahedron, cube, icosahedron, etc.

$$\begin{pmatrix} \alpha & \beta & \beta & \beta \\ \beta & \alpha & \beta & \beta \\ \beta & \beta & \alpha & \beta \\ \beta & \beta & \beta & \alpha \end{pmatrix} = H \longrightarrow \frac{---\alpha - \beta}{-\alpha + 3\beta} \quad \textcircled{0}$$

Note: This could be a model for tetrahedral H_4 , the arrangement of *H* atoms around the *C* atom in methane

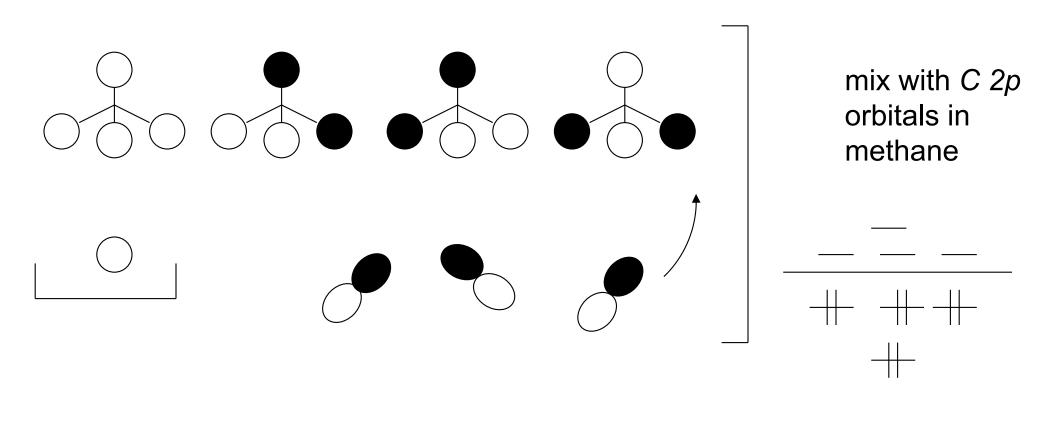
In methane, these orbitals of the H atoms can only mix with C orbitals of the same symmetry. What mixing is allowed?

the tetrahedron is a good example the power of using symmetry

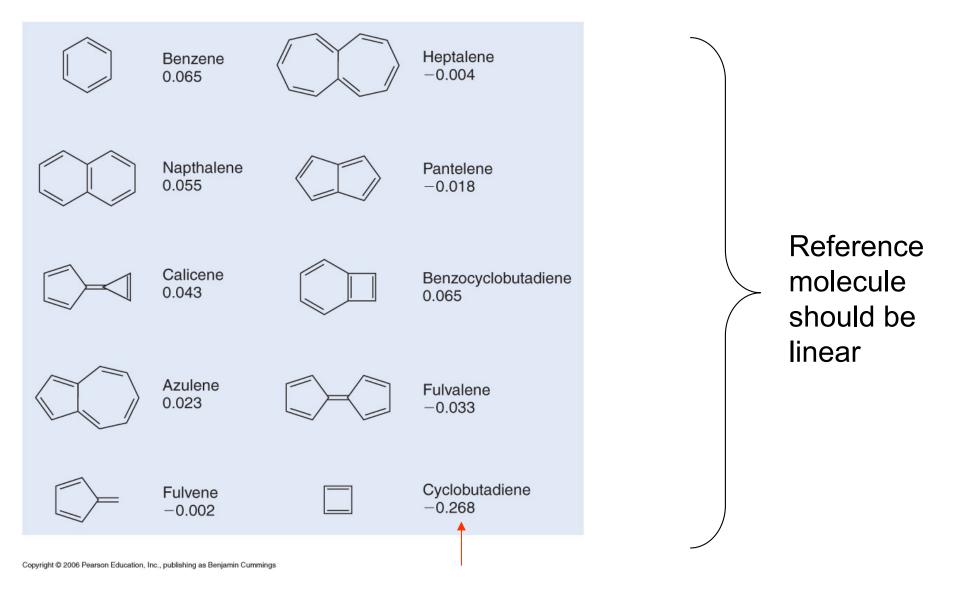


two perpendicular symmetry planes

$$\begin{bmatrix} x_1 = \frac{1}{\sqrt{2}}(\phi_1 + \phi_2) & H_{11} = \alpha + \beta \\ H_{22} = \alpha + \beta \\ H_{22} = \alpha + \beta \\ H_{12} = 2\beta \end{bmatrix} \longrightarrow \alpha + 3\beta, \quad \alpha - \beta$$
$$H_{12} = 2\beta$$
$$H_{12} = 2\beta$$
$$K_3 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_2) \qquad H_{33} = \alpha - \beta$$
$$K_4 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_3) \qquad H_{44} = \alpha - \beta$$



Resonance delocalization energy (units of β , per π electron



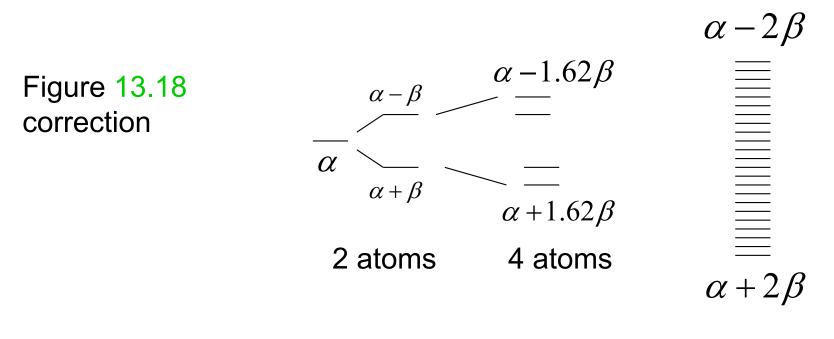
Aromatic - stabilized Antiaromatic - destabilized

$$H = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha \end{pmatrix}$$

What happens to the pattern of energy levels when we go from benzene to pyridine? To fluorobenzene? To 1,3,5 trifluorobenzene?

How can we model these chemical substitutions using Huckel theory?

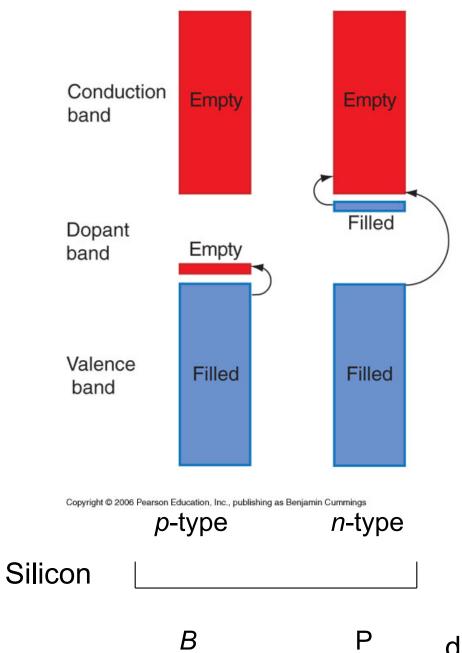
Emergence of band structure as chain length grows



 ∞ # atoms

Actually, one cannot have long range order in 1 dimension, and as a results the bonds alternative long, short, long, which opens up a band gap.

Do you see why?



dopants