Chem 2430, Exam \#3
1.

The $2^{\text {nd }}$ and third orbitals ace predicted to be degenerate in Hickel theory due to the restriction to nearest neighbor interactions.

There are two elections in the pair of degenerate orbitals. So there will be three low-lying singlet states and a low-lying triplet state. If we label the degenerate orbitals as " a " and " b " we have

$$
\begin{array}{ll}
a b+b a & (S) \\
a b-b a & (T) \\
a^{2}+b^{2} & (S) \\
a^{2}-b^{2} & \text { (S) } \tag{s}
\end{array}
$$

The molecule probably twists nomplenar as that would remove the repulsion between the CH_{2} soups.
2.

$$
\begin{aligned}
H= & -\frac{1}{2 m} \frac{d^{2}}{d x_{1}^{2}}-\frac{1}{2 m} \frac{d^{2}}{d x_{2}^{2}}+\frac{1}{2} k x_{1}^{2}+\frac{1}{2} k x_{2}^{2} \\
& +q_{1} \varepsilon x_{1}+q_{2} \varepsilon x_{2}-\frac{2 q_{1} q_{2} x_{1} x_{2}}{R^{3}}
\end{aligned}
$$

At $2^{\text {nd }}$ order $\left.\Delta E=\frac{\langle 0| q \varepsilon x_{1}|\cdot\rangle^{2}}{-\omega}+\frac{\langle 0| q \varepsilon x_{2}|1\rangle^{2}}{-\omega} \right\rvert\, q_{1}=q_{2}$

$$
=\frac{2 q^{2} \varepsilon^{2}}{-\omega}\langle 0| x|1\rangle^{2}=-\frac{q^{2} \varepsilon^{2}}{k}
$$

which is $2 x$ the energy lowering of the oscillator.

At third order we have

$$
\begin{aligned}
\Delta E & =-\frac{q^{4} \varepsilon^{2}}{R^{3}(\hbar \omega)(\hbar \omega)}\left(\frac{\hbar}{2 m \omega}\right)^{2}=-\frac{q^{4} \varepsilon^{2}}{R^{3}} \frac{1}{4 m^{2} \omega^{4}} \\
& =-\frac{q^{4} \varepsilon^{2}}{4 R^{3} R^{2}}
\end{aligned}
$$

This is simply the interaction between the two induced dipoles.
3. We need to evaluate $\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}$

$$
\begin{gathered}
\langle r\rangle=3 / 2 \quad\left\langle r^{2}\right\rangle=3 \\
\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}=\sqrt{3} / 2 \\
\text { 4. } V=\frac{1}{2} k x^{2}+0.01 x^{4}, k=0.1, \mu=1000 \\
\psi_{0}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \alpha=\omega m / \hbar
\end{gathered}
$$

(a)

$$
\begin{aligned}
E & =\hbar \omega+0.01\langle 0| x^{4}|0\rangle \\
& =\frac{\hbar \omega}{2}+0.01 \frac{\hbar^{2}}{4 m \omega^{2}} 3=\frac{3}{4(1000)(01)} \frac{+\hbar \omega}{2} \\
E & =\frac{\omega}{2}+0.0075(\text { in a. u. })
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) for } \psi=e^{-a x^{2} / 2} \\
& E=\frac{\frac{a}{2 m} \sqrt{\frac{\pi}{a}}+\left(\frac{1}{2} k-\frac{a^{2}}{2 m}\right) \frac{\sqrt{\pi}}{2 a^{3 / 2}}+0.01 \frac{3}{4} \frac{\sqrt{\pi}}{a^{5} / 2}}{\sqrt{\frac{\pi}{a}}} \\
& =\frac{\frac{a}{4 m}+\frac{k}{4 a}+3 / 4 \frac{0.01}{a^{2}}}{2 E / 2 a=}=0=\frac{1}{4 m}-\frac{k}{4 a^{2}}-3 / 4 \frac{(2) 001}{a^{3}} \\
& \quad \text { or } \frac{a^{3}}{4 m}-\frac{k}{4} a-3 / 4 \frac{2(0.01)}{a^{3}}
\end{aligned}
$$

$\rightarrow a=0.0388_{2}$ vS 0.01 for the purely harmonic problem,

$$
a=10.2875 \text { us } 10
$$

