Chem 2430 -Answers Exam \#1.

1. Yes, $e^{-a x^{2}}$ is reasonable os it $\rightarrow 0$ as $x \rightarrow \pm \infty$, and it is symmetric about $x=0$

$$
\begin{aligned}
\langle E\rangle & =2 \int_{0}^{\infty} e^{-a x^{2}} H e^{-a x^{2}} d x / 2 \int_{0}^{\infty} e^{-2 a x^{2}} d x \\
\langle E\rangle & =\frac{2 \int_{0}^{\infty} e^{-a x^{2}}\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}\right) e^{-a x^{2}} d x+2 V_{0} \int_{b / 2}^{\infty} e^{-2 a x^{2}} d x}{\sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{a}}} \\
\langle E\rangle & =\frac{2 \int_{0}^{\infty}\left(a-2 a^{2} x^{2}\right) e^{-2 a x^{2}} d x+2 V_{0} \int_{b / 2}^{\infty} e^{-2 a x^{2}} d x}{\sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{a}}} \\
& =\frac{\frac{1}{2} \sqrt{a} \sqrt{\sqrt{x} / 2}+\sqrt{\frac{\pi}{2}} \frac{V_{0}}{\sqrt{a}} \operatorname{erc}\left(\sqrt{\frac{a}{2}} b\right)}{\sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{a}}} \\
& =a / 2+V_{0} \text { effc}\left(\sqrt{\frac{a}{2}} b\right)
\end{aligned}
$$

A good approximate wavefunction for the first excited state is $x e^{-a x^{2}}$.
2. $\quad H=\hbar \omega\left(a^{+} a+\frac{1}{2}\right)$

$$
\begin{aligned}
& {\left[a,\left[1 / 2, a^{+}\right]\right]=a \frac{1}{2} a^{+}-a a^{+} 1 / 2-1 / 2 a^{+} a+a^{+} 1 / 2 a=0} \\
& {\left[a,\left[a^{+} a, a^{+}\right]\right]=a a^{+} a a^{+}-a a^{+} a^{+} a-a^{+} a a^{+} a+a^{+} a^{+} a a} \\
& =a a^{+}\left[a a^{+}-a^{+} a\right]-a^{+}\left[a a^{+}-a^{+} a\right] a
\end{aligned}
$$

but $a a^{+}-a^{-1} a=1$
So $\left[a,\left[a^{+} a, a^{+}\right]=2 a a^{t}-a^{+} a=1\right.$
So $\left[a,\left[H, a^{+}\right]\right]=\hbar \omega$ which is no longer on operator
3. I, $A e^{i \operatorname{tg} x}+B e^{-i k_{1} x}, h_{1}=\sqrt{2 m E} / \hbar$
II. $C e^{i h_{2} x}+e^{-i k_{2} x}, k_{2}=\sqrt{2 m\left(E-V_{1}\right)} / \hbar$

III $E e^{-K x} \quad K=\sqrt{2 m\left(V_{2}-E\right)} / \hbar$
4. In Coctesion coordinates

$$
\begin{aligned}
& E=\frac{\hbar \omega}{2}+n_{x} \hbar \omega+\frac{\hbar \omega}{2}+n_{y} \hbar \omega=\hbar \omega\left(1+n_{x}+n_{y}\right) \\
& E(0,0)=\hbar \omega, E(10)=E(0,1)=2 \hbar \omega \\
& E(2,0)=E(0,2)=E(1,1)=3 \hbar \omega
\end{aligned}
$$

In polar coordinates

$$
\begin{aligned}
& -\frac{1}{\partial \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right] \psi+\frac{1}{2} k r^{2} \psi=E \psi \\
& \psi=f(\phi) g(\phi)=f() e^{i m \phi} \\
& -\frac{1}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{2}{\partial r}-\frac{m^{2}}{r^{2}}\right] \psi+\frac{1}{2} k r^{2} \psi=E \psi
\end{aligned}
$$

Lets try $f(r)=e^{-a r^{2}}$, for the case $m=0$
This gives $E=2 a / \mu, a=\frac{1}{2} \sqrt{k \mu}$
$E=\sqrt{2 / \mu} \rightarrow \hbar \omega$, lome as in canibion cord.
for $m= \pm 1$, try $f(r)=r e^{-a r^{2}}$
This gives $E=2 \hbar \omega$, again the some as above

