Chem 2430: HW set \#4

1. Using ladder operators evaluate $\langle 0| x^{4}|0\rangle$ and $\frac{\left.\left|\langle 0| x^{3}\right| 1\right\rangle\left.\right|^{2}}{\hbar \omega}$ and $\frac{\left.\left|\langle 0| x^{3}\right| 3\right\rangle\left.\right|^{2}}{3 \hbar \omega}$
2. If we measure L_{z} of a particle whose state function is an eigenfunction of \hat{L}^{2} with eigenvalue 6, what are the possible outcomes? Would this be different if we measured L_{y}
3. For a rigid rotor diatomic molecule the rotational energy level go as

$$
E=\frac{J(J+1) \hbar^{2}}{2 I}, J=0,1,2,3, \ldots \text {.The rotational constant is } B=\hbar^{2} / 2 I
$$

Consider ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$. For this molecule the first rotational transition is at $21.2 \mathrm{~cm}^{-1}$. What is the value of B? Calculate the bond length of the molecule.

