Chem 2430: HW #10

1. If there are two perturbations to H° , i.e., $H = H^{\circ} + H' + H''$ then there are two possible contributions to the first-order energy correction for state $i \langle i | H' | i \rangle$ and $\langle i | H'' | i \rangle$.

The second order correct the energy of state *i* is then $\sum_{j \neq i} \frac{\langle i | H' + H'' | j \rangle|^2}{E_i^\circ - E_j^\circ}$

Here and above $|i\rangle$ and $|j\rangle$ refer to eigenfunctions of H° .

Assuming the integrals are real, there is the possibility of $\langle i | H'' | j \rangle^2$, $\langle i | H'' | j \rangle^2$ and $\langle i | H' | j \rangle \langle j | H'' | i \rangle$ terms in the numerator.

For the vibrational-rotational Hamiltonian of a diatomic molecule, let H' denote the $\gamma (r - r_e)^3$ correction to the harmonic potential, and H" denote the lowest order correction from expansion of $\frac{1}{R^2}$ in the rotational part of the operator.

Show that the cross term in the second-order expression for the energy contributes to a correction involving the factor $\left(v + \frac{1}{2}\right)J(J+1)$.

2. Estimate the distance at which the potential energy curves corresponding to the Na + Cl and $Na^+ + Cl^-$ diabatic states of sodium chloride cross.

3. How many electronic states are derived from the $\sigma_g(\pi_u)^2$ configuration and what are the terms symbols? Which of these states can be described by using a single Slater determinant wave function?