Symmetry CHEM 2430

```
\begin{array}{ll} \textbf{n-fold rotation axis} & \rightarrow & \text{rotation by 360°/n} \\ \textbf{(C_n)} \\ C_n & \text{symmetry element} \\ & \hat{C}_n & \text{symmetry operation} \end{array}
```

```
Reflection plane (\sigma)
```

```
Inversion(i)
```

```
Not present in BF<sub>3</sub>
```

Present in H_2 , C_2H_4 , etc.

n-fold improper rotation (n-fold rotation + reflection) (S_n)

Has three σ_v one σ_h reflection planes There are also C_3, C_3^{-1} (or C_3^{-2}) and three C₂ operations.

All groups have the identity (E) operation.

 \mbox{CH}_4 has a three \mbox{S}_4 axis that are not a \mbox{C}_4 axis

A product of two symmetry operations = a symmetry operation in the group If a molecule belongs to a particular group all symmetry operations in the group commute with it.

$$\begin{split} \mathbf{C}_{1} \text{ only } \hat{E} \\ \mathbf{C}_{s} \text{ only } \hat{E}, \hat{\sigma}_{h} \\ \mathbf{C}_{i} \text{ only } \hat{E}, \hat{i} \\ \mathbf{C}_{n} \text{ only } \hat{E}, \hat{C}_{n}, \hat{C}_{n}^{2}, \dots \hat{C}_{n}^{n-1} \\ \mathbf{C}_{2} \text{ has } \hat{E}, \hat{C}_{2} \\ \mathbf{C}_{3} \text{ has } \hat{E}, \hat{C}_{3}, \hat{C}_{3}^{2} \text{ etc.} \end{split}$$

 $\mathrm{C}_{{}_{nh}}$ has a symmetry plane $(\sigma_{{}_{h}}) ot$ to $\mathtt{C}_{\mathtt{n}}$ axis

Examples of	point	groups
-------------	-------	--------

C_s	E	$\sigma_{_h}$		
A'	1	1	<i>x</i> , <i>y</i>	x^2, y^2, z^2, xy
<i>A</i> "	1	-1	Z	yz, xz

C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_v(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1		xy
B_1	1	-1	1	-1	x	XZ
	1	-1	-1	1	у	yz

Product of two representations is a representation

$$B_1 \times B_2 = (1, 1, -1, -1) = A_2$$

Different representations are orthogonal

$$B_1 \cdot B_2 = 1 + 1 - 1 - 1 = 0$$

water molecule in the *yz* plane

belongs to B_1

belongs to B_2

belongs to A_2

p orbitals here are perpendicular to the plane

C_{3v}	E	$2C_3(z)$	$3\sigma_{v}$		
A_1	1	1	1	Z	x^2+y^2 , z^2
A_2	1	1	-1		
E	2	-1	0	(x, y)	$(x^2-y^2, xy), (xz, yz)$

 C_3 and C_3^2 are the same type of operation and are grouped together. Ditto for the three σ_v operations

Show $E \perp \text{to } A_1 : (2)(1) + 2(-1)(1) + 3(0)(1) = 2 - 2 = 0$ What representation is $E^2 = \begin{pmatrix} 4 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 - 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 - 1 \end{pmatrix}$ $E^2 \Rightarrow E + A_1 + A_2$

For a heteronuclear diatomic, the point group is $C_{\infty v}$

This group lacks the I and C_2 operations.

L	$D_{\infty h}$	E	2 <i>C∞</i>	•••	$\infty \sigma_{v}$	2 <i>S∞</i>	i		∞C_2			
	Σ_g^+	1	1		1	1	1		1		$x^2 + y^2, z^2$	
Σ	Σ_g^{-}	1	1		-1	1	1	•••	-1			
Ι	Π_g	2	$2\cos\phi$		0	2	$-2\cos\phi$		0		(<i>xz</i> , <i>yz</i>)	
•												$(x^2 - y^2, xy)$
	Σ_u^+	1	1	•••	1	-1	-1		-1			belongs to Δ_g
	Σ_u^{-}	1	1		-1	-1	-1		1	Z		
-	Π_u	2	$2\cos\phi$		0	-2	$2\cos\phi$	•••	0	(x, y)		

 π_g