Symmetry

CHEM 2430
n -fold rotation axis \rightarrow rotation by $360^{\circ} / \mathrm{n}$ $\left(C_{n}\right)$
C_{n} symmetry element
\hat{C}_{n} symmetry operation

Reflection plane (σ)

Inversion(i)
Not present in BF_{3}
Present in $\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, etc.
n-fold improper rotation (n-fold rotation + reflection) $\left(S_{n}\right)$

Has three σ_{v} one σ_{h} reflection planes
There are also $C_{3}, C_{3}^{-1}\left({\left.\text { or } \mathrm{C}_{3}{ }^{2}\right)}\right.$) and three C_{2} operations.

All groups have the identity (E) operation.

A product of two symmetry operations = a symmetry operation in the group
If a molecule belongs to a particular group all symmetry operations in the group commute with it.
C_{1} only \hat{E}
C_{s} only $\hat{E}, \hat{\sigma}_{h}$
C_{i} only \hat{E}, \hat{i}
C_{n} only $\hat{E}, \hat{C}_{n}, \hat{C}_{n}^{2}, \ldots \hat{C}_{n}^{n-1}$
C_{2} has \hat{E}, \hat{C}_{2}
C_{3} has $\hat{E}, \hat{C}_{3}, \hat{C}_{3}^{2}$ etc.
$\mathrm{C}_{n h}$ has a symmetry plane $\left(\sigma_{h}\right) \perp$ to C_{n} axis
$C_{2 h}$

also has inversion
$C_{n v} \quad C_{n}$ plus n vertical symmetry planes passing through C_{n}
$C_{2 v} 0_{\mathrm{H}}^{\mathrm{H}} E, \sigma_{v}, \sigma_{h}, C_{2}$

Examples of point groups

C_{s}	E	σ_{h}		
A^{\prime}	1	1	x, y	$x^{2}, y^{2}, z^{2}, x y$
$A^{\prime \prime}$	1	-1	z	$y z, x z$

$C_{2 v}$	E	$C_{2}(z)$	$\sigma_{v}(x z)$	$\sigma_{v}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1		$x y$
B_{1}	1	-1	1	-1	x	$x z$
B_{2}	1	-1	-1	1	y	$y z$

Product of two representations is a representation

$$
B_{1} \times B_{2}=(1,1,-1,-1)=A_{2}
$$

Different representations are orthogonal

$$
B_{1} \cdot B_{2}=1+1-1-1=0
$$

\bigcirc
belongs to B_{1}
belongs to B_{2}

belongs to A_{2}
p orbitals here are perpendicular to the plane

$C_{3 v}$	E	$2 C_{3}(z)$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1		
E	2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right),(x z, y z)$

C_{3} and $\mathrm{C}_{3}{ }^{2}$ are the same type of operation and are grouped together. Ditto for the three σ_{v} operations

Show $\mathrm{E} \perp$ to $\mathrm{A}_{1}:(2)(1)+2(-1)(1)+3(0)(1)=2-2=0$
What representation is $\mathrm{E}^{2}=\left(\begin{array}{lll}4 & 1 & 0\end{array}\right)=\left(\begin{array}{ll}2-1 & 0\end{array}\right)+\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 1\end{array}-1\right)$
$E^{2} \Rightarrow E+A_{1}+A_{2}$

For a heteronuclear diatomic, the point group is C_{∞} v
This group lacks the I and C_{2} operations.

D_{∞}	E	$2 C \infty$	\ldots	$\infty \sigma_{v}$	$2 S \infty$	i	\ldots	∞C_{2}		
$\Sigma_{g}{ }^{+}$	1	1	\ldots	1	1	1	\ldots	1		$x^{2}+y^{2}, z^{2}$
Σ_{g}^{-}	1	1	\ldots	-1	1	1	\ldots	-1		
Π_{g}	2	$2 \cos \phi$	\ldots	0	2	$-2 \cos \phi$	\ldots	0		$(x z, y z)$
.										
.										
.										
$\Sigma_{u}{ }^{+}$	1	1	\ldots	1	-1	-1	\ldots	-1		
$\Sigma_{u}{ }^{-}$	1	1	\ldots	-1	-1	-1	\ldots	1	z	
Π_{u}	2	$2 \cos \phi$	\ldots	0	-2	$2 \cos \phi$	\ldots	0	(x, y)	
belongs to Δ_{g}										

