The 1D Schrodinger Eq is an example of a second-order linear homogeneous differential eq. (DE)

General solution of a 2nd order linear homogeneous DE

y''+P(x)y'+Q(x)y=0is $y = c_1y_1(x)+c_2y_2(x)$, where y_1 and y_2 obey the DE

There are two constants consistent with the need to integrate y" twice to solve the eq.

$$c_1 y_1'' + c_2 y''_2 + P(c_1 y_1' + c_2 y_2') + Q(c_1 y_1 + c_2 y_2) = 0$$

$$c_1[y_1'' + Py_1' + Qy_1] + c_2[y_2'' + Py_2' + Qy_2] = 0$$

The particle in a box problem

$$V = \infty \begin{bmatrix} V=0 \\ 0 \end{bmatrix} \begin{bmatrix} V=\infty \\ U=\infty \end{bmatrix} \quad V = \infty, x < 0, x > L \\ V = 0, 0 \le x \le L \end{bmatrix}$$

For this potential, the particle can only be in the box where V=0

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$
 inside the box

Possible solutions are: sin(ax) and cos(ax) where a is some constant

$$\frac{d^2}{dx^2}\cos(ax) = -a^2\cos(ax)$$
$$\frac{d^2}{dx^2}\sin(ax) = -a^2\sin(ax)$$

So a general solution is: $\psi = c_1 \sin(ax) + c_2 \cos(ax)$

Now lets apply the boundary conditions

$$\boldsymbol{\psi}(\mathbf{x}) = 0$$
 at $\mathbf{x} = 0$, L

Using the boundary condition at x = 0

$$\psi(0) = 0 \implies c_2 = 0$$
, since $\cos(0) = 1$

 $\psi = c_1 \sin(ax)$

Using the boundary condition at x = L

 $\psi(L) = c_1 \sin(aL)$

 $c_1 = 0$ would imply no particle Nontrivial case: $c_1 \neq 0$

$$\Rightarrow aL = n\pi, n = 1, 2, 3...$$

$$\psi(x) = c_1 \sin\left(\frac{n\pi x}{L}\right)$$

c₁ is just a normalization constant Normalize the wave function

$$\psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

For 1D systems, the energy increases with the number of nodes.

Now plug ψ into SE

$$\frac{\hbar^2}{2m} \left(\frac{n^2 \pi^2}{L^2} \right) = E \qquad \qquad E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} = -\frac{n^2 h^2}{8mL^2}$$

Things to note:

- energy levels are quantized
- $E \neq 0$. Why?
- Levels get closer as m >, L >, or $h \rightarrow 0$

I.e., as the system approaches classical behavior

Can use to model π electrons of polyenes

Since the orbitals extend beyond the C atoms we should add ~ 0.5 Å to each end

	box size	# π electrons
Ethylene	1.4+1.0=2.4Å	2
Butadiene	3(1.4)+1.0=5.2	Å 4
Hexatriene	5(1.4)+1.0=8Å	6

From past experience we know that there can be at most 2 electrons per orbital.

What is the energy of the lowest optical absorption?

Ethylene	$\Delta n=1\rightarrow 2$
Butadiene	$\Delta n=2\rightarrow 3$
Hexatriene	$\Delta n=3\rightarrow 4$

Same # of nodes as the "real" π orbitals of polyenes (not counting the sign change due to reflecting in the plane of the atoms)

Introduction of atomic units (a.u.)

In atomic units \hbar , c, m_e all = 1

Atomic unit of distance	= 1Bohr = 0.529 Å
Atomic unit of energy	= $27.211 \text{ eV} = 2x$ the energy of the 1s orbital of the H atom

What would you guess to be the atomic unit of time?

Butadiene absorption

$$E_{n} = \frac{n^{2}\pi^{2}\hbar^{2}}{2mL^{2}} = \frac{n^{2}\pi^{2}}{2(10)^{2}} \sim \frac{n^{2}\pi^{2}}{200} \sim \frac{n^{2}}{20} = 0.049n^{2}$$

Switch to atomic units
$$n=1 \qquad 1.33 \text{ eV}$$
$$n=2 \qquad 5.33 \text{ eV}$$
$$n=3 \qquad 12.0 \text{ eV} \qquad \text{red} \sim 1$$
Thus $\Delta E(n=2 \rightarrow 3) = 6.67 \text{ eV}$ As the UV to

red~1.8eV, blue~3.1eV

As the chain length increases, the transition moves from the UV to the visible and then into the infrared.

Recall that the dot product between two vectors is

 $\vec{r} \bullet \vec{s} = r_x s_x + r_y s_y + r_z s_z$

The dot product is 0 if the vectors are orthogonal

The integral $\int_{-\infty}^{\infty} \psi_i^* \psi_j dx$ is the continuous function analog of the dot product of vectors in Cartesian space In Dirac notation $\int_{-\infty}^{\infty} \psi_i^* \psi_j dx = \langle \psi_i | \psi_j \rangle$

For the particle in the box problem

$$\int_{0}^{L} \psi_{i} \psi_{j} dx = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ \\ 1 & \text{if } i = j \end{cases}$$

The functions $\{\psi_i\}$ form an orthonormal (both orthogonal and normalized) set.

The integration runs from 0 to L for the particle in the box problem

They also form a basis set in which any other function on (0,L) can be represented

Free particle and momentum

Free particle $\psi = e^{ikx}$ travelling to right e^{-ikx} travelling to left

momentum operator (for motion in the x direction)

 $\hat{p}_{x} = \frac{\hbar}{i} \frac{d}{dx}$ $p_{x}e^{ikx} = \hbar k e^{ikx}$ $p_{x}e^{-ikx} = -\hbar k e^{-ikx}$

For a free particle *k* can take on any real value

 $A\phi = a \phi$ is an example of an eigenvalue problem with A being some operator, a being the eigenvalue, and ϕ an eigenfunction

Note sin(kx) and cos(kx) are not eigenfunctions of the momentum operator

For a free particle

$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

Euler's relations
$e^{ix} = \cos(x) + i \sin(x)$
$e^{-ix} = \cos(x) - i\sin(x)$
$\cos(x) = (e^{ix} + e^{-ix})/2$
$\sin(x) = (e^{ix} - e^{-ix})/2i$
Note: $\exp(i\pi) = -1$