
Operators

Ôf g Ô is an operator.

f and g are functions

ˆ ˆˆ ˆ ,ABf BAf
ˆ ˆˆ ˆ ,ABf BAf the operators do not commute

ˆ ,dA
dx

Let: B̂ x

'ˆ ˆ dABf xf f xf
dx

  

'ˆˆ dBAf x f xf
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 

ˆ ˆˆ ˆAB BA f f    ˆ ˆˆ ˆ 1AB BA 

ˆ ,dA
dx

Note if: ˆ ,B y

then the operators do commute



ˆ ˆ ˆˆ ˆ ˆ,A B AB BA    We use as shorthand for the commutator

Consider applying two operators in succession

if the operators commute

if

ˆ ˆ, 0A B    If the operators commute



Eigenvalue problem

ˆ ,Af af where a is a constant

Linear Operators

 ˆ ˆ ˆA f g Af Ag  

 ˆ ˆA cf cAf
2

2
2, , ,d dx x

dx dx

examples:

In general, a QM Operator B̂

ˆ ,i i iB f b f i = 1, 2, 3,...,

A measurement of B must give one of the bi

will have many eigenfunctions

ˆ
i i iH E 

If we measure energy we get one of the Ei

If the system starts in an energy eigenstate Ei a 
measurement of the energy necessarily gives Ei

Consider the Schrödinger Eq.

C is a 
constant



Classical H: 
2
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2 2
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dH V x
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  
QM H:

ˆ x
dp

i dx
 



Now suppose the system is in a superposition of two energy eigenstates. 

1 1 1
ˆ ,H E 

2 2 2Ĥ E 

1 1 2 2c c   

Assume ψ is normalized:
2 2

1 2 1c c 

If we do many measurements on identically prepared systems. We will get 
E1 a fraction |c1|2 of the time and E2 a fraction |c2|2 of the time. 

Correspondence principle between classical observables and QM operators



In general, there can be multiple operators, e.g., energy, linear angular momentum, 
momentum, spin, various symmetry operations.

Each has its own eigenvalues and eigenfunctions.

E.g., for the particle in the box problem, the energy eigenfunctions are not 
momentum eigenfunctions.

What do we get if we do an isolated measurement of the momentum?

3D SE for a single particle
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For a 3D 1-particle system

  2
, , 1x y z dxdydz

  



   if ψ is normalized

For a 3D, n-particle system ψ depends on x1,…,zn and we 
need to ∫ over all degrees of freedom.

2
1,   dd    integrate over all degrees of freedom

Particle in a 3D Box
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m
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

0 x a 
0 y b 
0 z c 

V = 0 inside box
V = ∞ outside box

( , , ) ( ) ( ) ( )x y z f x g y h z try

Inside the box
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 A constant that we 
choose to be Ex

So E = Ex + Ey +Ez

This leads to three separate one-D particle-in-the-box problems
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Suppose the box is cubic with a = b = c

 
2

2 2 2
28x y zn n n x y z

hE n n n
ma

  

Energy Levels
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(111) is 
nondegenerate,

(211) is triply 
degenerate,

(123) is six-fold 
degenerate
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Group theory leads us 
to expect at most a 3-
fold degeneracy in the 
cubic group



There are degeneracies caused by symmetry and also those that are accidental (not symmetry 
caused). 

The cubic box clearly has two special situations of "accidental" degeneracies.

(1) The 6-fold degeneracy of the (1,2,3) level

(2) the degeneracy between (3,3,3) and the various (1,1,5) combinations.

Why many texts and lectures label these as accidental, the problem is actually much more interesting 
than that, due to the presence of hidden symmetries, i.e., operators not contained in the point group 
that commute with H.

See F.M. Fernández, Acta Polytech., 54 (2) (2014), pp. 113-115 (you can also find this on arXiv 
archive).



Compare with the H atom

3 , 3 , 3s p d

2 , 2s p

1s

degeneracy = 1 + 3 + 5

Degeneracies often related to symmetry. 

If ψ1 and ψ2 are degenerate eigenfunctions then c1ψ1 + c2ψ2
has the same energy as ψ1 and ψ2 alone

Thus, there is an infinite # of combinations 
that give the same energy

If the linearly independent combinations {fi }span a space, 
then any other functions possible in that space can be 
represented in terms of the {fi}.

degeneracy = 1 + 3 

degeneracy = 1 

But there is an interesting difference. Even 
though the Schrödinger Eq. for the H atom 
separates into r, θ, and ф equations, the 
energy depends only on the radial equation



Acceptable wave functions

1. continuous
2. continuous
3. is normalizable is finite. (ψ is quadratically integrable)
4. is single valued
----------------------------------

ψ
ψ'
ψ 2

d  
|ψ|2

Note: ψ’ is not continuous at the walls of the particle in the box 
problem. But real potentials don’t have discontinuous jumps in 
energy. 
Note: ψ is not quadratically integrable for unbound states.  

For every observable B, there is an operator 

Measurements of the observable B must give an eigenvalue of  B̂

Measurements of QM observables give real results.

B̂



Finite # of measurements

,
b

b
bn

B
N




,b
b

P b

b is a specific eigenvalue nb is 
the # of times it is observed

Pb is the probability of 
observable b

Average of operator *ˆ ˆ is B B B d  
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For 3D particle in box
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How can we show this?

Average (expectation value) of an operator

?

All measurements give the same value, k


