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      for atoms there is 
only one nucleus

Hartree: use the trial  wave function

     1 1 1 1 2 2 2 2, , , , ... , ,n n n ng r g r g r      

where we find the find the optimal gi

Choose    ,i

i

m
i i i l i ig h r Y  

This  neglects the antisymmetry. 
(We will deal with that later.)
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is the potential seen by electron i due to average 
charge distribution of all the other electrons. 
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There are analogous equations for 
the other electrons 

The solution gives a set of  equations that define the orbitals and 
give orbital energies.  E.g., 

In these equations



E.g., for Be atom we would solve an 
equation for 1 ( )sg r 1s and 2 ( )sg r 2s

Now what is the total energy?
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Here the superscript HartreeH 

and and



Let’s look at this in more detail for Be
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       the four integrals over the V(ri)



1 2 1 ,1 1 ,2 2 ,2 1 ,1 1 ,2 1 ,1 1 ,2 2 ,2 2 ,1 2 ,2 1 ,22 2 4 2 2 2 2s s s s s s s s s s s s s s s s s s s s s s s sE J J J J J J J J J J J             

1 2 1 ,1 2 ,2 1 ,22 2 4s s s s s s s sE J J J     

Note: we could have written this down immediately if we realized 
that we need to the eliminate the double counting in the orbital 
energy sum.

So far we have neglected the antisymmetry of the wavefunction.

This is accounted for in the Hartree-Fock approximation.

We now start with a Slater determinant trial wavefunction

           2

1 1 2 2 1 2 2 2 1
12 12

1 1( )eff
i i j i j i j

j i j i
V r r r dr r q q d q

r r
      

 

   


Note, that we now only need to consider 
1/r12 and to consider integration over r2 

due to the permutation of  the 
coordinates. 

However, we have to remember that the 
orbitals have a spin associated with 
them, and the exchange integral 
involving up and down spin orbitals is 
zero.  This is why I switched from r to q 
in the exchange integrals
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effV r J K  Coulomb and exchange operators

In practice we can remove the in the sum since if , the Coulomb and 
exchange contributions cancel. 

j i

This lets us obtain all orbitals from a single Fock operator

   1 1 1i iF r r  

Again Etotal is not just i since this double counts Coulomb and exchange interactions

For Be 1 2 1 ,1 2 ,2 1 ,2 1 ,22 2 4 2s s s s s s s s s sE J J J K      

j i

Note that the numerical 
factor is 2" as one can only 
have exchange with the 
electron of  the  same spin

This has no impact on the 
filled orbitals but causes 
significant shifts of  the 
energies of  the unfilled 
orbitals. filled orbitals 



Koopmans' Theorem

IP ~ - EA = -i i j j 

Do HF calculations on ground state neutral (assumed closed shell).

Using these orbitals calculate cation neutral
iE E

Where indicates that an electron is removed from orbital i
cation
iE

E.g., for He
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  Not what we would get if 
we actually carried out a 
HF calculation on He+

1He sHe
E E E    



Comparison of  experimental 
and Hartree-Fock radial 
distribution functions for the Ar
atom (From Levin, Quantum 
Chemistry)

For a single Slater determinant wave function the total charge density
is simply the sum of  the charge densities of  the various orbitalsHF

HF densities are very close to the exact densities

Radius of sphere enclosing ~98% of the charge vdW radius Orbital energies vs. Z. 
Note 1 Ha = 13.6 eV. 
From Levine 

Orbital energies alone do not allow one to 
determine, e.g., if is more stable than  1 23 4d s 33 .d
Recall that the state energies also include Coulomb and 
exchange contributions as well as electron correlation effects 



Roothaan method (1951) to solving the HF equations. 

Introduce atomic basis functions : 1s, 2s, 2p, etc.

Then the HF AO’s
j
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For atoms the basis functions could be Slater functions  0/1 ,r an mr e Y  
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For molecules it is preferable to use Gaussian functions 
times factors of x, y, z (to various power)



HF carried out using flexible basis sets give filled and empty orbitals

empty

(usually positive energy)

filled

(negative energy)

0

Ecorr = Enonrel – EHF

Can form excited determinants by exciting 
electrons from filled to empty orbitals.  

The wave function can then be written as a 
linear combination of  these determinants



With large flexible basis sets the low-lying virtual orbitals have E 0.

They are actually describing (approximately) the continuum, rather than 
orbitals appropriate for anion states or electronically excited states

This is a major problem for multideterminant calculations using 
flexible basis sets.

This is a less of a problem with smaller basis sets, e.g. 

2s1p for H

3s2p1d for C

etc.

For C this would be one function 
for 1s and two functions for the 
valence 2s, 2p

nvirt

nocc

# Slater determinants 
(neglecting symmetry)

# single excitations 

# double excitations 

occ virtn n 
2 2
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So the # of Slater determinants 
grows rapidly with the # of 
electrons and the excitation 
level. 



represents an excitation from orbital a to orbital r

Let
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Brillouin’s theorem

| 0r aa a 

Then

As a result of  this, the second order (MP2)  method can only 
mix double excitations with the HF Slater determinant

Third order PT: <0|V|de><de|V|de'><de'|V|0>

4th order PT:     <0|V|de><de|V|de'><de'|V|de''><de''|V|0>
<0|V|de><de|V|se><se|V|de'><de'|V|0>
<0|V|de><de|V|te><te|V|de'><de'|V|0>
<0|V|de><de|V|qe><qe|V|de'><de'|V|0>
<0|V|de><de|V|0><0|V|de'><de'|V|0>


