Harmonic Oscillator

Chem 2340

Classical harmonic oscillator

$$
\begin{array}{l|l}
F_{x}=-k x & k=\text { force constant } \\
m \frac{d^{2} x}{d t^{2}}+k x=0 & x \text { completes one period in } \Delta t=1 / v \\
x=A \sin (2 \pi v t+b) & \text { Note: } \sin (\mathrm{x}+\mathrm{y})=\sin (\mathrm{x}) \cos (\mathrm{y})+\cos (\mathrm{x}) \sin (\mathrm{y}) \\
& v=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} ; \quad \text { or } \omega=2 \pi v=\sqrt{\frac{k}{m}}=\text { angular frequency } \\
V=-\int F_{x} d x=\int k x d x=\frac{1}{2} k x^{2} & \\
K E=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2} & \\
E=T+V=2 \pi^{2} v^{2} m A^{2}=\frac{1}{2} k A^{2} & k=4 \pi^{2} v^{2} m
\end{array}
$$

Series solutions to DE's

Consider

$$
y^{\prime \prime}+c^{2} y=0 \quad \text { here } y^{\prime \prime}=d^{2} y / d x^{2}
$$

by inspection, the solutions are

$$
y_{1}=\sin (c x), y_{2}=\cos (c x)
$$

But we are not always going to be able to "guess" solutions.
A more general approach is to write

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

$$
\begin{aligned}
& y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
& y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
\end{aligned}
$$

So the DE becomes.
$\sum_{n=2} a n n(n-1) x^{n-2}+c^{2} \sum_{n=0} a_{n} x^{n}=0$
This can be rewritten as

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+c^{2} \sum_{n=0} a_{n} x^{n}=0
$$

$$
\sum_{n=0}\left[(n+2)(n+1) a_{n+2}+a_{n} c^{2}\right] x^{n}=0
$$

$$
\Rightarrow(n+2)(n+1) a_{n+2}+c^{2} a_{n}=0
$$

$$
2 \cdot 1 a_{2}+c^{2} a_{0}=0
$$

$$
3 \cdot 2 a_{3}+c^{2} a_{1}=0
$$

$$
4 \cdot 3 a_{4}+c^{2} a_{2}=0
$$

So $a_{2}, a_{4}, a_{6}, \ldots$ are in terms of a_{o} $a_{3}, a_{5}, a_{7}, \ldots$ are in terms of a_{1}

What is the significance of this?

Note: the equation relating higher $n a_{n}$ to the lower n coefficients is a recursion relation.

Now let's consider the SE for the harmonic oscillator

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+V \psi=E \psi
$$

$$
\frac{d^{2} \psi}{d x^{2}}+\left(\frac{2 m E}{\hbar^{2}}-\alpha^{2} x^{2}\right) \psi=0
$$

Actually, for a diatomic molecule the mass used would be the reduced mass.

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
\begin{gathered}
V=1 / 2 k x^{2} \\
v=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \\
4 \pi^{2} v^{2} m=k \\
\frac{4 \pi^{2} v^{2} m^{2}}{\hbar^{2}}=\alpha^{2}
\end{gathered}
$$

$$
\alpha=2 \pi v m / \hbar
$$

$$
\frac{d^{2} \psi}{d x^{2}}+\left(\frac{2 m E}{\hbar^{2}}-\alpha^{2} x^{2}\right) \psi=0
$$

Could directly solve using the series method
Alternatively, we can show that $e^{-\alpha x^{2} / 2}$ is a solution

$$
\begin{aligned}
& \psi=e^{-\alpha x^{2} / 2} \\
& \psi^{\prime}=-\alpha x e^{-\alpha x^{2} / 2} \\
& \psi^{\prime \prime}=\left(-\alpha+\alpha^{2} x^{2}\right) e^{-\alpha x^{2} / 2} \\
& {\left[-\alpha+\alpha^{2} x^{2}+\frac{2 m E}{\hbar^{2}}-\alpha^{2} x^{2}\right] e^{-\alpha x^{2} / 2}=0 \Rightarrow} \\
& \alpha=\frac{2 m E}{\hbar^{2}}, E=\frac{2 \pi v m}{\hbar} \frac{\hbar^{2}}{2 m}=\pi v \hbar=\frac{\hbar \omega}{2}=\frac{1}{2} h v
\end{aligned}
$$

We then look for a general solution of the

$$
\psi(x)=e^{-\alpha x^{2} / 2} f(x)
$$

```
We discard the }\mp@subsup{e}{}{\alpha\mp@subsup{x}{}{2}/2}\mathrm{ solution
```


Fig 4.2 from text showing impact of small error in the energy on the wave function In a numerical solution to the problem

$$
\begin{aligned}
& f^{\prime \prime}-2 \alpha x f^{\prime}+\left(\frac{2 m E}{\hbar^{2}}-\alpha\right) f=0 \\
& \text { Let } f=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& \text { can show } \quad c_{n+2}=\frac{\alpha+2 \alpha n-2 m E / \hbar^{2}}{(n+1)(n+2)} c_{n}
\end{aligned}
$$

Boundary conditions are $\psi \rightarrow 0$ as $x \rightarrow \pm \infty$
So $f(x)$ must not grow faster than $e^{-\alpha x^{2} / 2}$ falls off as $x \rightarrow \pm \infty$ Ratio test $\frac{c_{2 n+2}}{c_{n}} \sim \frac{\alpha}{n}$, for large n

Can show this implies that the series behaves as $e^{\alpha x^{2}}$
So we have a problem. We can solve this by requiring that $f(x)$ is a finite polynomial rather than an ∞ series.

For the series to truncate some $n=\mathrm{v}$ we require

$$
\alpha+2 \alpha v-2 m E / \hbar^{2}=0
$$

$$
\text { Then } \quad E=\frac{(\alpha+2 \alpha v)}{2 m} \hbar^{2}=\frac{2 \alpha\left[\frac{1}{2}+v\right]}{2 m} \hbar^{2}
$$

$$
=\frac{2(2 \pi v m)}{2 m \hbar}\left[\frac{1}{2}+v\right] \hbar^{2}=2 \pi v \hbar\left[\frac{1}{2}+v\right]=\hbar \omega\left[\frac{1}{2}+v\right]
$$

or $\hbar \omega\left[n+\frac{1}{2}\right] \quad \begin{aligned} & \text { If we switch back } \\ & \text { to the } n \text { variable }\end{aligned}$
So the energies are $\frac{1}{2} \hbar \omega, \frac{3}{2} \hbar \omega, \frac{5}{2} \hbar \omega, \ldots$

$$
c_{n+2}=\frac{2 \alpha(n-v)}{(n+1)(n+2)} c_{n}
$$

$$
\psi_{0}=\left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\alpha x^{2} / 2}
$$

The polynomials in this sequence are the Hermite polynomials, $\left\{H_{i}\right\}$

$$
\psi_{1}=\left(\frac{4 \alpha^{3}}{\pi}\right)^{\frac{1}{4}} x e^{-\alpha x^{2} / 2}
$$

$$
\psi_{2}=\left(\frac{\alpha}{4 \pi}\right)^{\frac{1}{4}}\left(2 \alpha x^{2}-1\right) e^{-\alpha x^{2} / 2}
$$

Fig. 4.4 from text showing the wave functions of the first four levels of the HO

$$
\langle E\rangle_{i}=\left\langle\psi_{i}\right| H\left|\psi_{i}\right\rangle=\langle T\rangle_{i}+\langle V\rangle_{i}
$$

Just as for the classical HO $\langle T\rangle=\langle V\rangle$
Note it is the $\left\{\psi_{i}\right\}$ that form an orthogonal set, not the H_{i}

$$
\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\int_{-\infty}^{\infty} H_{i} H_{j} e^{-\alpha x^{2}} d x=\delta_{i j}
$$

$$
\langle x\rangle_{i}=0 \quad \text { Do you see why? }
$$

$$
\left\langle x^{2}\right\rangle_{i} \neq 0
$$

$$
\left\langle p_{x}\right\rangle_{i}=0
$$

$$
\left\langle p_{x}^{2}\right\rangle_{i} \neq 0
$$

There are lots of powerful relations involving Hermite polynomials.
Two are
$\left.H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n}}{d z^{n}} e^{-z^{2}} \right\rvert\,$ generating function
$\left.2 z H_{n}(z)=n H_{n-1}(z)+\frac{1}{2} H_{n+1}(z) \right\rvert\,$ recursion relationship
$H_{0}=1$
$H_{1}=2 z$
$H_{2}=4 z^{2}-2$
$H_{3}=8 z^{3}-12 z$
$z=\sqrt{\alpha} x$ to get the polynomials in terms of α and x.

Transition matrix element for going from level 0 to level n

The operator corresponding to radiation in the z direction is proportional to z

$$
\begin{aligned}
& =\langle 0| z|n\rangle=\int_{-\infty}^{\infty} \psi_{0} z \psi_{n} d z=\int_{-\infty}^{\infty} H_{0} \cdot z H_{n}(z) e^{-z^{2}} d z \\
& =\int_{-\infty}^{\infty}\left[\frac{1}{2} H_{0} n H_{n-1}(z)+\frac{1}{4} H_{0} H_{n+1}(z)\right] e^{-z^{2}} d z \\
& =n \int_{-\infty}^{\infty} H_{0} H_{n-1}(z) e^{-z^{2}} d z+\frac{1}{2} \int_{-\infty}^{\infty} H_{0} H_{n+1}(z) e^{-z^{2}} d z
\end{aligned}
$$

Non-zero only if $n=1$
0

Here I have not normalized the wave functions. To get the correct value of the integral, when non-zero, one has to use normalized functions and to include the prefactor of the operator

If starting in level n, the allowed transitions are to $n \pm 1$
Intensity $\propto|\langle 0| z| n\rangle\left.\right|^{2}$

In the Dirac notation the identity operator I can be written as: $\sum_{n=0}^{\infty}|n><n|$
Let's check

$$
\begin{aligned}
& \sum_{n=0}|n><n| \sum_{m=0}|m><m|=\sum_{n, m}|n><n| m><m \mid \\
& \quad=\sum_{n=0}|n><n| \text { since }\langle n \mid m\rangle=\delta_{n m} \\
& \text { Also }\left(\sum_{n=0}^{\infty}|n><n|\right)|m>=| m>
\end{aligned}
$$

Note that the identify operator involves an expansion over all the eigenfunctions of an operator

Supposed you want to evaluate: $\langle 0| z^{2}|0\rangle$
We can write: $\langle 0| z^{2}|0\rangle=\langle 0| z I z|0\rangle=\sum_{n=0}\langle 0| z|n><n| z|0\rangle$
$=|\langle 0| z| 1\rangle\left.\right|^{2}$

Realistic potential energy curves of diatomic molecules

For a real molecule the potential energy curve bends over and $V \rightarrow D_{e}$ as $x \rightarrow \infty$

Taylor series expansion about its minimum at $x=x_{0}$
$V(x)=\frac{d^{2} V / d x^{2}}{2}\left(x-x_{e}\right)^{2}+\frac{d^{3} V / d x^{3}}{3!}\left(x-x_{e}\right)^{3}+\frac{d^{4} V / d x^{4}}{4!}\left(x-x_{e}\right)^{4}+\ldots$
Thus a harmonic potential represents the leading term of the
Taylor series expansion of the potential about its minimum at x_{e}.

Can show that:
$E=\left(v+\frac{1}{2}\right) \hbar \omega_{e}-\left(v+\frac{1}{2}\right)^{2} \hbar \omega_{e} x_{e}-\ldots$.
$\omega_{e} x_{e}$ is the first unharmonicity constant (generally positive)

in cm^{-1} units

Population of levels at finite T

$\frac{N_{i}}{N_{j}}=\frac{g_{i}}{g_{j}} e^{-\left(E_{i}-E_{j}\right) / k T}$

$$
\begin{aligned}
& \text { Boltzmann factor } \\
& \text { in exponent }
\end{aligned}
$$

where g_{i} is the degeneracy of level i which is 1 for the 1D vibrational problem.

For chemically bonded diatomic molecules, only the $n=0$ level has significant population at room temperature.
$k T$ at room temperature $\sim 200 \mathrm{~cm}^{-1}$. For typical diatomics, $\hbar \omega$ (in cm ${ }^{-1}$ units) is $2000-3000 \mathrm{~cm}^{-1}$.

