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Classical harmonic oscillator
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x completes one period in Δt=1/υ

k = force constant
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Note: sin(x+y) = sin(x)cos(y) + cos(x)sin(y)

Note: here we used cos2(y) + sin2(y) = 1



Series solutions to DE's

Consider
2" 0y c y 

by inspection, the solutions are 
are

1 2sin( ), cos( )y cx y cx 

But we are not always going to be able to “guess” solutions. 

A more general approach is to write
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here 2 2" /y d y dx

So the DE becomes.

This can be rewritten as
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So a2, a4, a6,…are in terms of ao
a3, a5, a7,…are in terms of a1

What is the significance of this?

Note: the equation relating higher n an to the 
lower n coefficients is a recursion relation.



Now let's consider the SE for the harmonic oscillator
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Actually, for a diatomic 
molecule the mass used 
would be the reduced mass.
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Could directly solve using the series method

Alternatively, we can show that 
2 /2xe  is a solution
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We then look for a general solution of the
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Fig 4.2 from text showing impact of small 
error in the energy on the wave function
In a numerical solution to the problem

We discard the               solution 
2 /2xe
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Boundary conditions are ψ → 0 as x→ ± ∞

So f(x) must not grow faster than             falls off as x→ ±∞
2 /2xe 

Ratio test 2 2 ~n

n

c
c n

 , for large n

Can show this implies that the series behaves as 
2xe

So we have a problem. We can solve this by requiring that 
f(x) is a finite polynomial rather than an ∞ series.



For the series to truncate some n = v we require
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The polynomials in this sequence are the Hermite 
polynomials, {Hi}

If we switch back 
to the n variable

Fig. 4.4 from text showing the 
wave functions of the first four 
levels of the HO



Note it is the {ψi} that form an orthogonal set, not the Hi
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Just as for the classical HO T V

0
i

x 

2 0
i

x 

0x i
p 

Do you see why?
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There are lots of powerful relations involving Hermite polynomials. 

Two are
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z x to get the polynomials in terms of α and x.

generating function

recursion relationship



Transition matrix element for going from level 0 to level n
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0Non-zero only if n=1

If starting in level n, the allowed transitions are to n±1

The operator corresponding to radiation in 
the z direction is proportional to z

Here I have not normalized the wave 
functions. To get the correct value of the 
integral, when non-zero, one has to use 
normalized functions and to include the 
prefactor of the operator

Intensity 2
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In the Dirac notation the identity operator I can be written as:
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Let’s check
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Supposed you want to evaluate:
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We can write: 2
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Note that the identify operator 
involves an expansion over all the 
eigenfunctions of an operator



Realistic potential energy curves of diatomic molecules
For a real molecule the potential energy curve bends over and V→De as x→∞
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Thus a harmonic potential represents the leading term of the 
Taylor series expansion of the potential about its minimum at xe.

Taylor series expansion about its minimum at x = x0
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  is the first unharmonicity constant 

(generally positive)

Can show that:
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in cm-1 units

Population of levels at finite T
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  Boltzmann factor 
in exponent 

where gi is the degeneracy of level i which is 1 
for the 1D vibrational problem. 

For chemically bonded diatomic molecules, only the n=0
level has significant population at room temperature.

kT at room temperature ~200 cm-1. For typical diatomics, 
ħω (in cm-1 units) is 2000-3000 cm-1.


