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SCF equations
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For closed-shell SCF we can find a unique 
choice of orbitals for which ij i ij  

The resulting  canonical orbitals are delocalized 

The useful of electronic structure methods is 
greatly extended by the availability of analytical 
gradients and Hessians

Grid searches only viable for a small 
number of degrees of freedom

Suppose you needed 10 energy evaluations 
for one degree of freedom, and your 
molecule has 30 degrees of freedom

Would need (10)30 energy evaluations



Analytical geometry gradients N atoms: 3N coordinates, qi
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Available for a wide range of methods

HF, DFT, MP2, CASSCF, CCSD, etc. 

HF level gradient CPU time roughly the same as that for the SCF integral and energy 
calculations. 

Need to combine with an algorithm that determines the step size. (E.g., 
steepest descent)
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The matrix of the second derivatives

More rapid convergence can be achieved if we also 
have second derivatives

is the Hessian matrix

Lets consider the use of the Hessian when there re two degrees of freedom
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Where Hij indicates a particular component of 
the Hessian matrix

Now at the minimum
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  H q g

This is the Newton Raphson Method

1  q H g
g is the vector of gradients

For large molecules, evaluating the analytical Hessian at every step is very 
computationally demanding 

The quasi-Newton method uses approximate second derivatives, and thus takes less computer time.

In this approach an approximate Hessian is formed as one moves along the potential energy surface. 

Steepest descents uses only first derivatives: guaranteed to converge,

Newton methods obviously fail problem if H-1 blows up or if one starts off on the “wrong” side of an 
inflection point.

Can start with deepest descents and then switch to Newton or quasi-Newton when near 
convergence

In addition one can re-express the NR and quasi-Newton methods in terms of the eigenmodes
and eigenvalues if the Hessian

Improved radius of convergence.   Also can be use to locate transition states.
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the HOMO            is a          orbital 

the LUMO is a             orbital
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Excited             singlet and triplet states* 

Note that the       structure has         symmetry90 2dD
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Expect these to be twisted with a twist angle of 90



Although there is no      rotation axis, there is a      
improper rotation, hence the degeneracy.  

4C
4S

The     and        orbitals are degenerate in the 
perpendicular structure., making it important to use 
a two configurational wave function 
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These can be viewed as “atomic like” bound to the           core 
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Valence vs Rydberg orbitals

Ethylene : 6 valence virtual orbitals
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Occupied 
valence

valence virtual 
orbitals

Valence space results from minimum basis set. 

 *, , *CH CC CC  

Excited states involving other virtual orbitals are best classified as 
Rydberg in nature with an electron in an atomic-like orbital bound to a  

core
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It is possible for Rydberg states to drop below valence excited states in energy

This is the case for the water                           valence 
transition 

This valence state mixes so strongly with Rydberg 
levels that a clear cut valence transition is not seen.

The situation is different in the triplet manifold, in which case the valence 
state is well below the Rydberg state in energy.
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Electron-energy loss 
spectrum of N2.

What is the nature of 
the various transitions?


