ANGULAR MOMENTUM: 2D AND 3D ROTATION

Chem 2430

Angular Momentum

$$
\boldsymbol{L}=\boldsymbol{r} x \boldsymbol{p}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right|
$$

$$
\begin{aligned}
& L_{x}=y p_{z}-z p_{y} \\
& L_{y}=z p_{x}-x p_{z} \\
& L_{z}=x p_{y}-y p_{x}
\end{aligned}
$$

QM case
$\hat{L}_{x}=\frac{\hbar}{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)$

Similarly for \hat{L}_{y} and \hat{L}_{z}

$$
\begin{aligned}
& \hat{L}^{2}=\left|\hat{\boldsymbol{L}}^{2}\right|=\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{L}}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} \\
& \hat{L}_{y} f=\frac{\hbar}{i}\left(z \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial z}\right) \\
& {\left[\hat{L}^{2}, \hat{L}_{x}\right]=0,\left[\hat{L}^{2}, \hat{L}_{y}\right]=0,\left[\hat{L}^{2}, \hat{L}_{z}\right]=0} \\
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z},\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x},\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}}
\end{aligned}
$$

Thus, we cannot know precisely two different components of the angular momentum.

We can know precisely a value of \hat{L}^{2} and a value of one it components.
Convention is to specify L_{z}
Note: the fact that we can specify L^{2} does not mean we fully know L

What are the eigenvalue equations involving \hat{L}^{2} and \hat{L}_{z} ?
While we could directly address this question, it is useful to first consider a rigid rotor in 2D

$$
\frac{-\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \psi=E \psi
$$

r is fixed to r_{0}

Polar coordinates: $x=r_{o} \cos \phi, y=r_{o} \sin \phi$
Can show that the SE becomes

$$
\frac{-\hbar^{2}}{2 \mu r_{o}^{2}} \frac{d^{2} \psi}{d \phi^{2}}=E \psi
$$

This has the solutions

$$
\psi=e^{i m \phi} \text { and } E=\frac{\hbar^{2}}{2 \mu r_{o}^{2}} m^{2}=\frac{\hbar^{2} m^{2}}{2 \mathrm{I}} \quad I=\mu r_{o}^{2}=\text { moment of inertia }
$$

If this is a diatomic molecule the appropriate mass is the reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

https://www.cfm.brown.edu/people/dobrush/am3 4/Mathematica/ch6

What are the boundary conditions?

$$
\begin{aligned}
& \psi(0)=\psi(2 \pi) \\
& 1=e^{i 2 \pi m}
\end{aligned}
$$

Using the Euler relation, one finds that $m=0, \pm 1, \pm 2, \ldots$,

$$
E=\frac{\hbar^{2} m^{2}}{2 \mathrm{I}}
$$

For a classical rotor $E=\frac{|\ell|^{2}}{2 \mu r_{o}^{2}}$ where ℓ is the angular momentum
Note: E can $=0$ as there is no confining potential

$$
\begin{gathered}
\psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \\
L_{z} \psi_{m}=m \hbar \psi_{m}
\end{gathered}
$$

So the eigenfunctions of the 2D rotor are also eigenfunctions of \hat{H}

This is because $\left[\hat{L}_{z}, \hat{H}\right]=0$

Now on to the 3-D case
Spherical coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& r^{2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

$0 \leq r \leq \infty$
$0 \leq \theta \leq \pi$
$0 \leq \phi \leq 2 \pi$
$d \tau=r^{2} \sin \theta d r d \theta d \phi$
$\hat{L}_{x}=-i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right)$
$\hat{L}_{y}=-i \hbar\left(\cos \phi \frac{\partial}{\partial \theta}-\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right)$
$\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}$
Spherical harmonics $Y(\theta, \phi)$
are common eigenfunctions of \hat{L}^{2} and \hat{L}_{z}

$$
\begin{aligned}
& \hat{L}_{z} Y=b Y \\
& \hat{L}^{2} Y=c Y
\end{aligned}
$$

Separation of variables

$$
\begin{aligned}
& Y(\theta, \phi)=S(\theta) T(\phi) \\
&-i \hbar \frac{\partial}{\partial \phi}(S, T)=-S i \hbar \frac{\partial T}{\partial \phi}=b S T \\
& \text { or_}_{-i \hbar} \frac{d T}{T}=b d \phi
\end{aligned}
$$

$$
T=A e^{i b \phi / \hbar}
$$

$$
\Rightarrow b=m \hbar, m=0, \pm 1, \pm 2, \ldots,
$$

$$
T(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

$$
\begin{aligned}
& \hat{L}^{2} Y=c Y \\
& \hat{L}^{2} S T=c S T \\
& - \\
& -\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) S T=c S T \\
& - \\
& -\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta}\left(-m^{2}\right)\right) S T=c S T \\
& - \\
& -\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{-m^{2}}{\sin ^{2} \theta}\right) S=c S
\end{aligned}
$$

In treating this one usually introduces a change of variables

$$
\omega=\cos \theta,-1 \leq \omega \leq 1
$$

$$
\left(1-\omega^{2}\right) \frac{d^{2} G}{d \omega^{2}}-2 \omega \frac{d G}{d \omega}+\left[\frac{c}{\hbar^{2}}-\frac{m^{2}}{1-\omega^{2}}\right] G=0
$$

The first few solutions can be found by inspection. The general solution can be found using the series solution approach

$$
\begin{aligned}
& c=\ell(\ell+1) \hbar^{2}, \ell=0,1,2,3 \\
& |\underline{L}|=\sqrt{\ell(\ell+1)} \hbar
\end{aligned}
$$

For a given value of $\ell, m=-\ell,-\ell+1, \ldots 0, \ldots, \ell$

$$
Y_{\ell}^{m}(\theta, \phi)=\frac{1}{\sqrt{2 \pi}} S_{\ell, m}(\theta) e^{i m \phi}
$$

Fig. 5.6 from Levine

$$
\begin{array}{l:l}
S_{0,0}=\sqrt{2} / 2 \sim \mathrm{~s} \\
S_{1,0}=(\sqrt{6} / 2) \cos \theta \\
S_{1, \pm 1}=(\sqrt{3} / 2) \sin \theta
\end{array} \quad \sim \sim \mathrm{p} \quad \begin{aligned}
& Y_{1}^{0} \text { Nodes due to } \theta \\
& S_{2,0}=(\sqrt{10} / 4)\left(3 \cos ^{2}-1\right) \\
& S_{2, \pm 1}=(\sqrt{15} / 2) \sin \theta \cos \theta \\
& S_{2, \pm 2}=(\sqrt{15} / 4) \sin ^{2} \theta
\end{aligned}: \quad \begin{aligned}
& Y_{1}^{ \pm 1} \text { Nodes due to } \phi \\
& Y_{2}^{0} \text { Nodes due to } \theta \\
& Y_{2}^{ \pm 1} \text { one } \theta, \text { one } \phi \\
& Y_{\text {node }}^{ \pm 2} \text { Nodes due to } \phi
\end{aligned}
$$

**Note how m quant \# is "passed" to the θ Eq. Impacts degeneracy but not the energy.

3D rigid rotor

$\hat{H}=\frac{\hat{L}^{2}}{2 \mu r^{2}} \psi=E \psi$
So $E=\frac{\hbar^{2}}{2 I} \ell(\ell+1)$ and for each ℓ there is a $2 m+1$ degeneracy (different m_{l} values)
A natural extension would be to consider a particle in a spherical box of radius $r=r_{0}$, with zero potential inside the box and infinite potential outside.

Separation of variables in spherical coordinates.

$$
\psi=R(r) \Theta(\theta) \Phi(\phi)
$$

$R E q$ quantizes the energy.

