ANGULAR MOMENTUM: 2D AND 3D
ROTATION
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Angular Momentum
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Similarly for iy and I:Z



Thus, we cannot know precisely two different components of the angular
momentum.

: r2 :
We can know precisely a value of L” and a value of one of it components.

Convention is to specify L,

Note: the fact that we can specify L2 does not mean we fully know L



What are the eigenvalue equations involving /2 and iz?

While we could directly address this question, it is useful to
first consider a rigid rotor in 2D
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This has the solutions
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But what are the allowed values of m?



What are the boundary conditions?
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Using the Euler relation, one
finds that m = 0, £1, £2, ...,
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where ¢ is the angular momentum

Note: E can = 0 as there is no confining potential
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So the eigenfunctions of the 2D rotor
are also eigenfunctions of

This is because [LAZ,IEI} =0



Now on to the 3-D case

Spherical coordinates
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Spherical harmonics y(9,¢)
are common eigenfunctions of [ and ﬁz
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Separation of variables
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In treating this one usually introduces a change of variables
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The first few solutions can be found by inspection.The general solution
can be found using the series solution approach
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**Note how m quant # is “passed” to the 6 Eé|. Impacts degeneracy but not the energy.



3D rigid rotor
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So E= Ef(f + 1) and for each £ there is a 2m+1 degeneracy (different m, values)

A natural extension would be to consider a particle in a spherical box of

radius r = r,, with zero potential inside the box and infinite potential
outside.

Separation of variables in spherical coordinates.

v =R(r)0(0)®(¢)
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R Eq quantizes the energy.



