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Thus, we cannot know precisely two different components of the angular 
momentum.
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2L̂We can know precisely a value of      and a value of one of it components.

Convention is to specify Lz

Note: the fact that we can specify L2 does not mean we fully know L



What are the eigenvalue equations involving and    ? 

While we could directly address this question, it is useful to 
first consider a rigid rotor in 2D
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r is fixed to ro

If this is a diatomic molecule the 
appropriate mass is the reduced mass
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Can show that the SE becomes
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This has the solutions
2 2 2

2
22 2o

mE m
r 
 

 

But what are the allowed values of m?

Polar coordinates:

2
oI r = moment of inertia

https://www.cfm.brown.edu/people/dobrush/am3
4/Mathematica/ch6



What are the boundary conditions?
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Using the Euler relation, one 
finds that m = 0, ±1, ±2,…,

Note: E can = 0 as there is no confining potential
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For a classical rotor
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where ℓ is the angular momentum
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So the eigenfunctions of the 2D rotor 
are also eigenfunctions of  Ĥ

This is because ˆ ˆ, 0zL H   
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Spherical coordinates
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Spherical harmonics  ,Y  
are common eigenfunctions of     and2L̂ ˆ
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Now on to the 3-D case

Fig. 5.5 from Levine
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Separation of variables
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In treating this one usually introduces a change of variables
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The first few solutions can be found by inspection. The general solution 
can be found using the series solution approach

  21 , 0,1, 2,3c      
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For a given value of , , 1,...0,...,m      
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Fig. 5.6 from Levine
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**Note how m quant # is “passed” to the θ Eq. Impacts degeneracy but not the energy.



3D rigid rotor

2

2

ˆˆ
2

LH E
r
 


 

 
2

1
2

E
I
   So and for each    there is a 2m+1 degeneracy (different ml values)

A natural extension would be to consider a particle in a spherical box of 
radius r	=	ro, with zero potential inside the box and infinite potential 
outside. 

     R r   

ℓ m
R Eq quantizes the energy.

Separation of variables in spherical coordinates.




