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Adding Angular Momenta
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Clebsch-Gordon coefficients

As noted above we can have simultaneous eigenfunctions of
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The resulting basis functions can be written as 

which are linear combinations of 1 1| m 2 2| mand

Couple 1L and 2L

1 2 1 2 1 2, 1...L          

We already used this when we concluded that p2 S, P, D states



Suppose we have three angular moments of 1 2 31, 2, 3    

1 2, 3, 2,1 

6,5, 4,3, 2,1,0;5, 4,3,2,1;4,3, 2

First couple

Now couple in 3
If one has two or more electrons, the individual operators do 
not commute with H although does, if we neglect spin-orbit 
coupling.
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C atom: 1s22s22p2d

1 21, 2   3, 2,1 , ,L P D F   states.
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Terms symbols

There is a total of 6x10=60 arrangements 
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Hund’s rules

States from the same electronic configuration

• The state with the highest value of S is lowest in energy.
• If there is more than one state with highest S that with the 

highest L is lowest in energy. 

Some energy levels of  the 
carbon atom from Levine
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2Ŝ has to commute with both      and Ĥ îkP
to have simultaneous eigenfunctions of three operators
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Total angular momentum

 J L S

, 1,...J L S L S L S    

 2 2ˆ 1J J J   

Without S.O. coupling the different J components have the same 
energy.

However, they are split by S.O. coupling 

MJ gives the z-component associated with J

0, 1 1L S J   

1, 0 1,L S J   
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1s2p (3P):  S = 2, L = 1
3P0, 3P, 3P2

H atom

He atom
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Na D line doublet 
(Figure from Levine) 



Spin-orbit interaction (relativistic effect)

For a one electron atom
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Many electron atoms
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If  A is +, the state with the highest J is lowest in E

If  A is -, the state with the lowest J is lowest in E
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Now consider the effect of  an external B field



Spin-orbit and magnetic field couplings for the 
He atom (from Levine) 



So far we have been considering L-S (Russell-Saunders) coupling 

First couple the Li and the Si and then couple these 
together to get J

The other limit is j-j coupling (further down the periodic 
table where spin-orbit interactions are larger)

Couple li, si of individual electrons, to get ji, and 
then couple these to get J

The intermediate case is especially challenging. 

Nuclear spin I couples with electrons J to give F

There is still a further coupling:



Condon-Slater rules

i i i   (spatial orbital times spin 
function)
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1fhere      is the standard 1-electron Hamiltonian not 
the Fock Hamiltonian.



If all orbitals are doubly occupied:

i.e. 1 1 2 2 3 4, ,         etc.

   
/2

1
1

ˆ| | 2 1 | | 1
n

i i
i

E D H D f 


  

 
/2

,
2

n

ij ij
i j

J K 

Be: Coulomb and exchange
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Slater-Gordon rules also give us values of the integrals
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