Adding Angular Momenta

CHEM 2430

Adding Angular Momenta

$$
\begin{aligned}
& \boldsymbol{L}=\boldsymbol{L}_{1}+\boldsymbol{L}_{2}, \quad L_{x}=L_{1 x}+L_{2 x} \text { etc. } \\
& \quad \hat{L}^{2}=\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{L}}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} \\
& \left(\hat{\boldsymbol{L}}_{1}+\hat{\boldsymbol{L}}_{2}\right) \cdot\left(\hat{\boldsymbol{L}}_{l}+\hat{\boldsymbol{L}}_{2}\right)=\hat{L}_{1}^{2}+\hat{L}_{2}^{2}+\hat{\boldsymbol{L}}_{1} \hat{\boldsymbol{L}}_{2}+\hat{\boldsymbol{L}}_{2} \cdot \hat{\boldsymbol{L}}_{1} \\
& \quad \hat{L}^{2}=\hat{L}_{1}^{2}+\hat{L}_{2}^{2}+2\left(L_{1 x} L_{z x}+L_{1 y} L_{2 y}+L_{1 z} L_{2 z}\right) \\
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}, \text { etc. }} \\
& {\left[\hat{L}^{2}, \hat{L}_{x}\right]=0, \text { etc. }}
\end{aligned}
$$

We can have simultaneous eigenfunctions of $\hat{L}^{2}, \hat{L}_{z}, \hat{L}_{1}{ }^{2}, \hat{L}_{2}{ }^{2}$
Note that for the coupled systems we don't have eigenfunctions of $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ since these operators do not commute with \hat{L}^{2}

As noted above we can have simultaneous eigenfunctions of $\hat{L}^{2}, \hat{L}_{z}, \hat{L}_{1}{ }^{2}, \hat{L}_{2}{ }^{2}$

The resulting basis functions can be written as $\left|\ell_{1} \ell_{2} L M_{L}\right\rangle$
which are linear combinations of $\left|\ell_{1} m_{1}\right\rangle$ and $\left|\ell_{2} m_{2}\right\rangle$
Clebsch-Gordon coefficients

$$
\left|\ell_{1} \ell_{2} L M_{L}\right\rangle=\sum C\left(\ell_{1}, \ell_{2}, L_{1} M_{L}, m_{1}, m_{2}\right)\left|\ell_{1} m_{1}\right\rangle\left|\ell_{2} m_{2}\right\rangle
$$

Couple L_{1} and L_{2}

$$
L=\ell_{1}+\ell_{2}, \ell_{1}+\ell_{2}-1 \ldots\left|\ell_{1}-\ell_{2}\right|
$$

We already used this when we concluded that $p^{2} \rightarrow S, P, D$ states

Suppose we have three angular moments of $\ell_{1}=1, \ell_{2}=2, \ell_{3}=3$
First couple $\ell_{1}, \ell_{2} \rightarrow 3,2,1$
Now couple in $\ell_{3} \rightarrow 6,5,4,3,2,1,0 ; 5,4,3,2,1 ; 4,3,2$
If one has two or more electrons, the individual \hat{L}_{i}^{2} operators do not commute with H although \hat{L}^{2} does, if we neglect spin-orbit coupling.

C atom: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p} 2 \mathrm{~d}$
Terms symbols $\ell_{1}=1, \quad \ell_{2}=2 \Rightarrow L=3,2,1 \Rightarrow P, D, F$ states.
There is a total of $6 \times 10=60$ arrangements

Equivalent electrons

$$
\begin{array}{ll}
s^{2}, p^{6}, d^{10} & \rightarrow{ }^{1} S \\
p, p^{5} & \rightarrow{ }^{2} P \\
p^{2}, p^{4} & \rightarrow{ }^{3} P,{ }^{1} D,{ }^{1} S \\
p^{3} & \rightarrow 4 s,{ }^{2} D,{ }^{2} P \\
d, d^{9} & \rightarrow{ }^{2} D \\
d^{2}, d^{8} & \rightarrow{ }^{3} F,{ }^{3} P,{ }^{1} G,{ }^{1} D,{ }^{1} S \\
d^{5} & \rightarrow{ }^{6} S,{ }^{4} G,{ }^{4} F,{ }^{4} D,{ }^{4} P,{ }^{2} I,{ }^{2} H,{ }^{2} G(2),{ }^{2} F(2),{ }^{2} D(3),{ }^{2} P,{ }^{2} S
\end{array}
$$

Hund's rules

States from the same electronic configuration

- The state with the highest value of S is lowest in energy.
- If there is more than one state with highest S that with the highest L is lowest in energy.

Some energy levels of the carbon atom from Levine
total spin $\boldsymbol{S}=\sum_{i=1}^{n} \boldsymbol{S}_{i}$
\hat{S}^{2} has to commute with both \hat{H} and $\hat{P}_{i k}$
to have simultaneous eigenfunctions of three operators

$$
\begin{aligned}
& \hat{S}_{z}=\hat{S}_{1 z}+\hat{S}_{2 z} \\
& \hat{S}_{z} \alpha \alpha=\hbar \alpha \alpha \\
& \hat{S}_{z} \beta \beta=-\hbar \beta \beta \\
& \hat{S}_{z}[\alpha \beta+\beta \alpha]=0[\alpha \beta+\beta \alpha] \\
& \hat{S}^{2}=\hat{S}_{1}^{2}+\hat{S}_{2}^{2}+2\left[\hat{S}_{1 x} \hat{S}_{2 x}+\hat{S}_{1 y} \hat{S}_{2 y}+\hat{S}_{1 z} \hat{S}_{2 z}\right]
\end{aligned}
$$

$$
\hat{S}^{2} \alpha \alpha=2 \hbar \alpha \alpha
$$

$$
\hat{S}^{2}[\alpha \beta+\beta \alpha]=2 \hbar[\alpha \beta+\beta \alpha]
$$

$$
\hat{S}^{2}[\alpha \beta-\beta \alpha]=0
$$

Total angular momentum

$$
J=L+S
$$

$$
J=L+S, L+S-1, \ldots|L-S|
$$

$\hat{J}^{2} \psi=J(J+1) \hbar^{2} \psi$
Without S.O. coupling the different J components have the same energy.
However, they are split by S.O. coupling
M_{J} gives the z-component associated with J

$$
\begin{aligned}
& L=0, \quad S=1 \Rightarrow J=1 \Rightarrow{ }^{3} \mathrm{~S}_{1} \\
& L=1, \quad S=0 \Rightarrow J=1, \quad{ }^{1} \mathrm{P}_{1}
\end{aligned}
$$

Hatom

$$
\begin{aligned}
& 1 s \rightarrow{ }^{2} S \rightarrow{ }^{2} S_{1 / 2}\left(M_{J}= \pm 1 / 2\right) \\
& 2 p \rightarrow{ }^{2} P \rightarrow{ }^{2} P_{3 / 2},{ }^{2} P_{1 / 2}
\end{aligned}
$$

He atom

$$
\begin{gathered}
1 \mathrm{~s} 2 \mathrm{p}\left({ }^{3} \mathrm{P}\right): \mathrm{S}=2, \mathrm{~L}=1 \\
\longrightarrow{ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P},{ }^{3} \mathrm{P}_{2} \\
1 s 2 p\left({ }^{1} P\right) \rightarrow{ }^{1} P_{1}
\end{gathered}
$$

Na D line doublet (Figure from Levine)

Spin-orbit interaction (relativistic effect)

For a one electron atom

$$
\hat{H}_{S O}=\frac{1}{2 m_{e} c^{2}} \frac{1}{r} \frac{d V}{d r} \hat{L} \cdot \hat{S}
$$

Many electron atoms

$$
\begin{aligned}
\hat{H}_{S O} & \approx \frac{1}{2 m_{e} c^{2}} \sum_{i} \frac{1}{r_{i}} \frac{d V_{i}\left(r_{i}\right)}{d r_{i}} \hat{L}_{i} \cdot \hat{S}_{i} \\
& =\sum_{i} \zeta_{i}\left(r_{i}\right) \hat{L}_{i} \cdot \hat{S}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{J} \cdot \boldsymbol{J} & =(\boldsymbol{L}+\boldsymbol{S}) \cdot(\boldsymbol{L}+\boldsymbol{S}) \\
& =L^{2}+S^{2}+2 \boldsymbol{L} \cdot \boldsymbol{S}
\end{aligned}
$$

So $\boldsymbol{L} \cdot \boldsymbol{S}=\frac{1}{2}\left[J^{2}-L^{2}-S^{2}\right]$

$$
\begin{aligned}
\hat{L} \cdot \hat{S} \psi & =\frac{1}{2}\left(\hat{J}^{2}-\hat{L}^{2}-\hat{S}^{2}\right) \psi \\
& =\frac{1}{2}[J(J+1)-L(L+1)-S(S+1)] \hbar^{2} \psi \\
E_{S O} \approx & \frac{1}{2}\langle\zeta\rangle \hbar^{2}[J(J+1)-L(L+1)-S(S+1)] \\
& =\frac{A}{2} \hbar^{2}[J(J+1)-L(L+1)-S(S+1)]
\end{aligned}
$$

If A is + , the state with the highest J is lowest in E
If A is -, the state with the lowest J is lowest in E

Now consider the effect of an external B field

$$
\begin{aligned}
& \hat{H}^{\circ}+\hat{H}_{\mathrm{rep}}+\hat{H}_{S O}+\hat{H}_{B} \\
& \quad \hat{H}_{B}=-\boldsymbol{m} \cdot \boldsymbol{B}=-\left(\hat{\boldsymbol{m}}_{L}+\hat{\boldsymbol{m}}_{S}\right) \cdot \boldsymbol{B}
\end{aligned}
$$

If the field is in the z direction

$$
\begin{aligned}
& \hat{H}_{B}=\mu_{B} B \hbar^{-1}\left(\hat{J}_{z}+\hat{S}_{z}\right), \quad \mu_{B}=\frac{e \hbar}{2 m_{e}} \\
& E_{B}=\langle\psi| \hat{H}_{B}|\psi\rangle=\mu_{B} B M_{J}+\mu_{B} B \hbar^{-1}\left\langle S_{z}\right\rangle \\
& E_{B}=\mu_{B} g B M_{J}
\end{aligned}
$$

$$
\text { Lande's g factor }=g_{J}=\frac{g_{L}(J(J+1)+L(L+1)-S(S+1))+g_{S}(J(J+1)-L(L+1)+S(S+1))}{2 J(J+1)}
$$

$$
=1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)}
$$

Spin-orbit and magnetic field couplings for the He atom (from Levine)

So far we have been considering L-S (Russell-Saunders) coupling
First couple the L_{i} and the S_{i} and then couple these together to get J

The other limit is $j-j$ coupling (further down the periodic table where spin-orbit interactions are larger)

Couple l_{i}, s_{i} of individual electrons, to get j_{j}, and then couple these to get J

The intermediate case is especially challenging.
There is still a further coupling:
Nuclear spin I couples with electrons J to give F

Condon-Slater rules

$$
\begin{array}{l|l}
\mu_{i}=\theta_{i} \sigma_{i} & \begin{array}{l}
\text { (spatial orbital times spin } \\
\text { function) }
\end{array} \\
\hat{B}=\sum_{i} \hat{f}_{i}+\sum_{i} \sum_{j>i} \hat{g}_{i j}
\end{array}
$$

Assume \hat{f}_{i} and $\hat{g}_{i j}$ do not depend on spin

$$
\begin{aligned}
\langle D| \sum_{i=1}^{N} f_{i}|D\rangle= & \sum_{i=1}^{N}\left\langle\theta_{i}(1)\right| \hat{f}_{1}\left|\theta_{i}(1)\right\rangle \\
\langle D| \sum_{i} \sum_{j>i} g_{i j}|D\rangle= & \sum_{i} \sum_{j>i}\left[\left\langle\theta_{i}(1) \theta_{j}(2)\right| \hat{g}_{12}\left|\theta_{i}(1) \theta_{j}(2)\right\rangle\right. \\
& \left.-\delta_{m_{s_{i}}, m_{s_{j}}}\left\langle\theta_{i}(1) \theta_{j}(2)\right| \hat{g}_{12}\left|\theta_{j}(1) \theta_{i}(2)\right\rangle\right] \quad \delta_{m_{s_{i}, m_{s_{j}}}}=1 \text { if } m_{s_{i}}=m_{s_{j}} \text { and } 0 \text { otherwise }
\end{aligned}
$$

$$
\langle D| H|D\rangle=\sum_{i}\left\langle\theta_{i}(1)\right| \hat{f}_{1}\left|\theta_{i}(1)\right\rangle+\sum_{i} \sum_{j>i}\left(J_{i j}-\delta_{m_{s i}, m_{s j}} K_{i j}\right)
$$

here f_{1} is the standard 1-electron Hamiltonian not the Fock Hamiltonian.

If all orbitals are doubly occupied:
i.e. $\phi_{1}=\theta_{1}=\theta_{2}, \phi_{2}=\theta_{3}=\theta_{4}$, etc.

$$
\begin{aligned}
E=\langle D| H|D\rangle= & 2 \sum_{i=1}^{n / 2}\left\langle\phi_{i}(1)\right| \hat{f}_{1}\left|\phi_{i}(1)\right\rangle \\
& +\sum_{i, j}^{n / 2}\left(2 J_{i j}-K_{i j}\right)
\end{aligned}
$$

Be: Coulomb and exchange

$$
J_{1 s 1 s}+J_{2 s 2 s}+4 J_{1 s 2 s}-2 K_{1 s 2 s}
$$

Slater-Gordon rules also give us values of the integrals

$$
\left\langle D^{\prime}\right| \hat{B}|D\rangle \text { when } D^{\prime} \neq D
$$

If D^{\prime} and D differ by one spin orbital $u_{n}^{\prime} \neq u_{n}$

$$
\longrightarrow\left\langle u_{n}^{\prime}(1)\right| \hat{f}_{1}\left|u_{n}(1)\right\rangle
$$

and $\left\langle D^{\prime}\right| \sum_{j>i} \hat{g}_{i j}|D\rangle=\sum_{j}\left[\left\langle u_{n}^{\prime} u_{j}\right| \hat{g}_{12}\left|u_{n} u_{j}\right\rangle-\left\langle u_{n}^{\prime} u_{j}\right| \hat{g}_{12}\left|u_{j} u_{n}\right\rangle\right]$

What if D^{\prime} and D differ by two spin orbitals $u_{n}^{\prime} \neq u_{n}$ and $u_{n-1}^{\prime} \neq u_{n-1}$

$$
\begin{aligned}
& \left\langle D^{\prime}\right| \sum \hat{f}_{i}|D\rangle=0 \\
& \left\langle D^{\prime}\right| \sum_{j>i} \hat{g}_{i j}|D\rangle=\left\langle u_{n}^{\prime} u_{n-1}^{\prime}\right| \hat{g}_{12}\left|u_{n} u_{n-1}\right\rangle-\left\langle u_{n}^{\prime} u_{n-1}^{\prime}\right| \hat{g}_{12}\left|u_{n-1} u_{n}\right\rangle
\end{aligned}
$$

