Adding Angular Momenta
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Adding Angular Momenta
L=L+L,, L =L_+L, etc

Pef =i+l +L’
(£ +L)(E,+ L) = £+ £+ L+ £y

1xzx

P=L*+L, +2(LL +L,L, +LL)
[ix,iy} = ihL_, etc.

[LZ A] 0, etc.

We can have simultaneous eigenfunctions of [*, L

Note that for the coupled systems we don’t have
eigenfunctions of L,. and L2 since these operators
do not commute with ]2



As noted above we can have simultaneous eigenfunctions of
AN
The resulting basis functions can be written as | ¢ £, LM L>

which are linear combinations of | £,m, ) and | / 2m2>

Clebsch-Gordon coefficients

MlgzLZWJ =ZC(€15629L1ML5m19m2) | €1m1> | €2m2>

Couple [, and [,
L=0+0,,0+0,—1..|¢, -1,

We already used this when we concluded that p> = S, P, D states



Suppose we have three angular moments of ¢, =1, £/, =2, (;=3

First couple £,,¢, = 3,2,1
Now couple in f?) — 6,5,4,3,2,1,0;5,4,3,2,1;4,3,2

If one has two or more electrons, the individual Ll.2 operators do
not commute with H although /7 does, if we neglect spin-orbit
coupling.

C atom: 1s?2s22p2d

Terms symbols ¢, =1, /,=2 = [ =32 1= P,D, Fstates.

There is a total of 6x10=60 arrangements
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States from the same electronic configuration
Some energy levels of the

* The state with the highest value of S is lowest in energy. carbon atom from Levine
 If there is more than one state with highest S that with the
highest L 1s lowest in energy.



total spin § = Z S,
i=1

,§ 2 has to commute with both A and lék

to have simultaneous eigenfunctions of three operators

S =S.+5,.
S’Zaa =haa

S.pp =~hpp

S.[ap+ pa]=0[ap+ pa]
S*=82+S87+ 2[§1x§2x +8,,S,, + 3’123’22]
S*aa = 2haa

S? [a,b’+ ,Ba] = 2h[aﬂ+,b’a]
S*[af - pa]=0



Total angular momentum

J=L+S§
J=L+S,L+S-1,.|L-S]
Sy =J(J+1) Ry

Without S.O. coupling the different J components have the same
energy.

However, they are split by S.O. coupling

M, gives the z-component associated with J

L=0, S=1=J=1 mp 33,

L=1, §=0 =>J=1 mp 'P,



H atom
Is = ’S — ZS%(M" :i%)
2p - ZP—) 2})3/2: 2}1/2
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(Figure from Levine)



Spin-orbit interaction (relativistic effect)

For a one electron atom

A 1 1dV » 4
< ——L-§

- 2mc’ r dr
Many electron atoms
A 1 1 dV(r)-

Hg, = 2
2m,c

=Z§i(rz‘)i’i 'Si

J-J=(L+S8)(L+S)

=I+S*+2L-S

So L-S=%[J2—L2—S2]



LSy = (- =8)w
= [ (D) -L(L+1)-S(s+1)]w
By x5O0 [T (T +1)=L(L+1)=5(5+1)]
=2 [ (I +1)=L(L+1)=5(5 +1)]

If A is +, the state with the highest J is lowest in E

If A is -, the state with the lowest J is lowest in E



Now consider the effect of an external B field

N

H +Hrep+HSO+HB
Hy=-m-B=—(m,+mg)- B
If the field is in the z direction

[:]B =/’lBBh_l(jz+‘§z)’ Hg =%

e

Ly = <W|I:[B W)= 1, BM , + p1, Bl <Sz>

Ly = 1,8BM,
g (JU+D+LL+1D)-SE+1)+g(JU+ D —LL+1)+SS+1))

Lande’s g factor= g, =
2J(J+ 1)

J(J+1)=L(L+1)+S(S+1)
2J(J +1)

=1+
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Spin-orbit and magnetic field couplings for the
He atom (from Levine)



So far we have been considering L-S (Russell-Saunders) coupling

First couple the L; and the S;and then couple these
together to get J

The other limit is -7 coupling (further down the periodic
table where spin-orbit interactions are larger)

Couple /, s, of individual electrons, to get s, and

P ~1

then couple these to get J

The intermediate case is especially challenging.

There is still a further coupling:

Nuclear spin /couples with electrons J to give F



Condon-Slater rules

— 0o (spatial orbital times spin
i function)
B=2/+ 224

i j>i
Assume fl and g ; do not depend on spin
N

<DI§ﬁID>=Z<@(1)Iﬁ|@(1)>

(PIZT e 10)-EE[(00)0, ()12, 100)0,(2)
=5, . (6.06,(2)12,16,(06.2)) ]

<D\H\D>=Z< ) 7161 >+ZZ(J -5, )

i j>i

here f, is the standard 1-electron Hamiltonian not
the Fock Hamiltonian.

m, =1 if m, =m_ and 0 otherwise



If all orbitals are doubly occupied:

lLe. 4=6=06,, ¢=60,=0,, etc.

n/2

E=(D1H|D)=22(¢ (11714 ()

n/2

+;(2JU —Kl.j)

Be: Coulomb and exchange

Jlsls + J2s25 + 4J152s - 2K1s2s

Slater-Gordon rules also give us values of the integrals
<D'\é\D>whenD'¢D

If D'and D differ by one spin orbital u,'# u,

—> (' ()14 14,(1))



and <D'|Z§ij D> = Z|:<un'uj |§12 |unuj >_<un'uj |§12 |ujun >]
j>i

J

What if D' and D differ by two spin
orbitals 4, ' #u, and u',_ #u,

(DY /ID)=0

<D' | Zglj | D> = <un 'un—l' | ng | Z/lnun—l >_ <un'u 'n—l | §12 | un—lun >
J>i



