Chapter 10 The Boltzmann Distribution Law

1. The statistical thermodynamics of a cooperative system.

Perhaps the simplest statistical mechanical system having 'cooperativity' is the three-level system in the following table:

Energies	$2 \varepsilon_{0}$	ε_{0}	0
Degeneracies	γ	1	1

(a) Write an expression for the partition function q as a function of energy ε, degeneracy γ, and temperature T.
(b) Write an expression for the average energy $\langle\varepsilon\rangle$ versus T.
(c) For $\varepsilon_{0} / k T=1$ and $\gamma=1$, compute the populations, or probabilities, $p_{1}^{*}, p_{2}^{*}, p_{3}^{*}$ of the three levels.
(d) Now if $\varepsilon_{0}=2 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\gamma=1000$, find the temperature T_{0} at which $p_{1}=p_{3}$.
(e) Under condition (d), compute p_{1}^{*}, p_{2}^{*}, and p_{3}^{*} at temperature T_{0}.
(a) $\quad q=1+e^{-\varepsilon_{0} / k T}+\gamma e^{-2 \varepsilon_{0} / k T}$.
(b) $\left\langle\varepsilon_{0}\right\rangle=0 p_{0}+\varepsilon_{0} p_{i}+2 \varepsilon_{0} p_{2}$

$$
=\frac{1}{q}\left(\varepsilon_{0} e^{-\varepsilon_{0} / k T}+2 \varepsilon_{0} \gamma e^{-2 \varepsilon_{0} / k T}\right)=-\frac{\partial \ln q}{\partial \beta} .
$$

(c) $q=1+e^{-1}+e^{-2}=1.5032$,

$$
\begin{aligned}
& p_{1}=\frac{1}{q}=0.6652, \\
& p_{2}=\frac{e^{-1}}{q}=0.2447, \\
& p_{3}=\frac{e^{-2}}{q}=0.0900 .
\end{aligned}
$$

(d) Since $p_{1}=1 / q$ and $p_{3}=\gamma e^{-2 \varepsilon_{0} / k T} / q$, we want

$$
\begin{gathered}
\gamma e^{-2 \varepsilon_{0} / k T_{0}}=1 \Longrightarrow-\frac{2 \varepsilon_{0}}{k T_{0}}=\ln (1 / \gamma)=-6.9078 \\
\Longrightarrow T_{0}=\frac{2\left(2000 \mathrm{cal} \mathrm{~mol}^{-1}\right)}{6.9078\left(2 \mathrm{cal} \mathrm{~mol}^{-1}\right)}=289.5 \mathrm{~K} .
\end{gathered}
$$

(Use R in place of k for molar calculations.)
(e) $\frac{\varepsilon_{0}}{k T}=\frac{2000 \mathrm{cal} \mathrm{mol}^{-1}}{\left(2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)(289.5 \mathrm{~K})}=3.4539$.

Now $q=1+e^{-3.45}+1000 e^{-6.9078}=2.0317$,

$$
\begin{aligned}
& p_{1}=\frac{1}{q}=0.4922=p_{3}, \\
& p_{2}=e^{-3.45} / q=0.0156
\end{aligned}
$$

5. Entropy depends on distinguishability.

Given a system of molecules at $T=300 \mathrm{~K}, q=1 \times 10^{30}$, and $\Delta U=3740 \mathrm{~J} \mathrm{~mol}^{-1}$,
(a) What is the molar entropy if the molecules are distinguishable?
(b) What is the molar entropy if the molecules are indistinguishable?
(a) For distinguishable particles, where $Q=q^{N}$, the molar entropy is

$$
\begin{aligned}
\frac{S}{n} & =R \ln q+\frac{\Delta U}{n T}, \\
\frac{\Delta U}{n} & =3740 \mathrm{~J} \mathrm{~mol}^{-1} \Longrightarrow \frac{S}{n}=\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \left(10^{30}\right)+\frac{3740 \mathrm{~J}}{300 \mathrm{~mol} \mathrm{~K}} \\
\Longrightarrow \frac{S}{n} & =586.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
$$

(b) For indistinguishable particles,

$$
Q=\frac{q^{N}}{N!} \approx \frac{q^{N}}{(N / e)^{N}} \Longrightarrow \ln Q \approx N \ln q-N(\ln N-1),
$$

so

$$
\frac{S}{n}=R(\ln q-\ln N+1)+\frac{\Delta U}{n T} .
$$

$N=n \mathcal{N}_{A}$, where $N=$ number of molecules, $n=$ number of moles and $\mathcal{N}_{A}=$ Avogadro's number.

$$
\begin{aligned}
\Longrightarrow \frac{S}{n} & =R \ln \left(\frac{q}{n \mathcal{N}_{A}}+1\right)+\frac{\Delta U}{n T} \\
& =\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\left[\ln \left(\frac{10^{30}}{6 \times 10^{23}}\right)+1\right]+\frac{3740}{300}=139.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
$$

Note that S is larger if particles are distinguishable.

So

$$
\Delta U=-\left(\frac{\partial \ln Q}{\partial \beta}\right) \approx-\frac{\partial}{\partial \beta}(N \ln q-N \ln N+N)=-N\left(\frac{\partial \ln q}{\partial \beta}\right)
$$

So

$$
\begin{aligned}
\langle\varepsilon\rangle & =\frac{\Delta U}{N}=\frac{\Delta U}{N}=-\left(\frac{\partial \ln q}{\partial \beta}\right) \\
& \Longrightarrow\langle\varepsilon\rangle \text { doesn't depend on distinguishability. }
\end{aligned}
$$

Now $S=k \ln Q+\frac{\Delta U}{T}=N k(\ln q-\ln N+1)-\frac{N}{T}\left(\frac{\partial \ln q}{\partial \beta}\right)$
$=S_{\text {distinguishable }}-\ln N+1<S_{\text {distinguishable }}$ for $N>2$ particles.

As seen in Problem 5, the entropy is larger for distinguishable systems.

9. Computing the Boltzmann distribution.

You have a thermodynamic system with three states. You observe the probabilities $p_{1}=0.9$, $p_{2}=0.09, p_{3}=0.01$ at $T=300 \mathrm{~K}$. What are the energies ε_{2} and ε_{3} of states 2 and 3 relative to the ground state?

$$
\begin{aligned}
q & =1+e^{-\varepsilon_{2} / k T}+e^{-\varepsilon_{3} / k T} \\
p_{1} & =\frac{1}{q}=0.9 \Longrightarrow q=\frac{10}{9} \\
p_{2} & =\frac{e^{-\varepsilon_{2} / k T}}{q}=0.9 e^{-\varepsilon_{2} / k T}=0.09 \Longrightarrow e^{-\varepsilon_{2} / k T}=\frac{1}{10} \\
& \Longrightarrow \varepsilon_{2}=k T \ln 10=\left(2 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K}) \ln 10=1.38 \mathrm{kcal} \mathrm{~mol}^{-1} \\
p_{3} & =\frac{e^{-\varepsilon_{3} / k T}}{q}=0.9 e^{-\varepsilon_{3} / k T}=0.01 \Longrightarrow e^{-\varepsilon_{3} / k T}=\frac{1}{90} \\
& \Longrightarrow \varepsilon_{3}=k T \ln 90=\left(2 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K}) \ln 90=2.70 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

10. The pressure reflects how energy levels change with volume.

If energy levels $\varepsilon_{i}(V)$ depend on the volume of a system, show that the pressure is the average

$$
p=-N\left\langle\frac{\partial \varepsilon}{\partial V}\right\rangle
$$

From the fundamental energy equation, $p=-(\partial \Delta U / \partial V)_{S, N}$. But $\Delta U=N\langle\varepsilon\rangle$, so

$$
\begin{aligned}
p & =-N\left(\frac{\partial\langle\varepsilon\rangle}{\partial V}\right)_{S, N}=-N\left[\frac{\partial}{\partial V} \sum_{1}^{N} \varepsilon_{i}(V) p_{i}\right]=-N\left[\sum_{1}^{N} \frac{\partial}{\partial V} \varepsilon_{i}(V) p_{i}\right] \\
& =-N\left[\sum_{1}^{N}\left(\frac{\partial \varepsilon_{i}(V)}{\partial V}\right) p_{i}\right]=-N\left\langle\frac{\partial \varepsilon}{\partial V}\right\rangle .
\end{aligned}
$$

11. The end-to-end distance in polymer collapse.

Use the two-dimensional four-bead polymer of Example 10.3. The distance between the chain ends is 1 lattice unit in the compact conformation, 3 lattice units in the extended conformation, and $\sqrt{5}$ lattice units in each of the other three chain conformations. Plot the average end-to-end distance as a function of temperature, if the energy is
(a) $\varepsilon=1 \mathrm{kcal} \mathrm{mol}^{-1}$.
(b) $\varepsilon=3 \mathrm{kcal} \mathrm{mol}^{-1}$.

To get the average end-to-end length $\langle d\rangle$, use the Boltzmann probabilities p_{j} for each of the $j=1,2, \ldots, 5$ conformations:

$$
\langle d\rangle=\sum_{j=1}^{5} p_{j} d_{j}=(1)\left(\frac{1}{q}\right)+\sqrt{5}\left(\frac{3 e^{-\varepsilon / k T}}{q}\right)+3\left(\frac{e^{-\varepsilon / k T}}{q}\right),
$$

where $q=1+4 e^{-\varepsilon / k T}$, so

$$
\langle d\rangle=\frac{1+9.71 e^{-\varepsilon / k T}}{1+4 e^{-\varepsilon / k T}} .
$$

The maximum end-to-end distance $(T \rightarrow \infty)$ is

$$
\frac{1+3 \sqrt{5}+3}{5}=2.14
$$

The midpoint is at $\langle d\rangle=1.57$. You can find the midpoint temperature T_{0} from

$$
\begin{aligned}
(1.57)\left(1+4 e^{-\varepsilon / k T_{0}}\right) & =1+9.71 e^{-\varepsilon / k T_{0}} \\
\Longrightarrow \frac{0.57}{3.43} & =e^{-\varepsilon / k T_{0}} .
\end{aligned}
$$

(a) $\quad T_{0}=\frac{\left(1000 \mathrm{cal} \mathrm{mol}^{-1}\right)}{\left(2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right) \ln \left(\frac{3.43}{0.57}\right)}=278 \mathrm{~K}$.
(b) $\quad T_{0}=835 \mathrm{~K}$.

12. The lattice model of dimerization.

Use the lattice model for monomers bonding to form dimers, and assume large volumes $V \gg 1$.
(a) Derive the partition function.
(b) Compute $p_{1}(T)$ and $p_{2}(T)$, the probabilities of monomers and dimers as a function of temperature, and sketch the dependence on temperature.
(c) Compute the bond breakage temperature T_{0} at which $p_{1}=p_{2}$.
(a) If you choose the convention that the ground state (dimer) has zero energy and the dissociated state has energy $\varepsilon>0$, then the partition function is

$$
\begin{aligned}
Q & =\sum_{\varepsilon} g(\varepsilon) e^{-\varepsilon / k T} \\
& =(V-1)+\left(\frac{1}{2} V-1\right)(V-1) e^{-\varepsilon / k T}
\end{aligned}
$$

