so we have

$$
\frac{\partial}{\partial T}\left(\frac{\partial U}{\partial V}\right)=0 \Longrightarrow \frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)=\frac{\partial C_{V}}{\partial V}=0
$$

which shows that C_{V} is independent of V.

4. Using Maxwell's relations.

Show that $(\partial H / \partial p)_{T}=V-T(\partial V / \partial T)_{p}$.

Start with $d H=T d S+V d p$.
Now divide by $d p$, holding T constant:

$$
\frac{d H}{d p} \quad[\text { at constant } T]=\left(\frac{\partial H}{\partial p}\right)_{T}=T\left(\frac{\partial S}{\partial p}\right)_{T}+V .
$$

Use the Maxwell relation (Table 9.1 of the text),

$$
\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

to get the result

$$
\left(\frac{\partial H}{\partial p}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{p}+V .
$$

5. Pressure dependence of the heat capacity.

(a) Show that, in general, for quasi-static processes,

$$
\left(\frac{\partial C_{p}}{\partial p}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p} .
$$

(b) Based on (a), show that $\left(\partial C_{p} / \partial p\right)_{T}=0$ for an ideal gas.
(a) Begin with the definition of the heat capacity,

$$
C_{p}=\frac{\delta q}{d T}=T \frac{d S}{d T},
$$

for a quasi-static process. Take the derivative:

$$
\begin{equation*}
\left(\frac{\partial C_{p}}{\partial p}\right)_{T}=T\left(\frac{\partial^{2} S}{\partial p \partial T}\right)=T\left(\frac{\partial^{2} S}{\partial T \partial p}\right) \tag{1}
\end{equation*}
$$

since S is a state function. Substitute the Maxwell relation

$$
\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

into Equation (1) to get

$$
\left(\frac{\partial C_{p}}{\partial p}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p} .
$$

(b) For an ideal gas, $V(T)=N k T / p$, so

$$
\begin{aligned}
\left(\frac{\partial V}{\partial T}\right)_{p} & =\frac{N k}{p} \\
\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p} & =0,
\end{aligned}
$$

and therefore, from part (a),

$$
\left(\frac{\partial C_{p}}{\partial p}\right)_{T}=0 .
$$

(a) $d U=T d S+P d V+\mu d N+F d x$,
$d G=-S d T+V d P+F d x$,
$F=\left(\frac{\partial G}{\partial x}\right)_{T, P}$,
$G(x)=\int(a T+b) x d x=\frac{1}{2}(a T+b) x^{2}$.
(b) $\left(\frac{\partial S}{\partial x}\right)_{T, P}=-\left(\frac{\partial F}{\partial T}\right)_{x, P}$,
(c) $\left(\frac{\partial S}{\partial x}\right)_{T, P}=-\left(\frac{\partial F}{\partial T}\right)_{x, P}=-a x$,
$S(x)=\int-a x d x=-\frac{1}{2} a x^{2}$.
(d) $F=\left(\frac{\partial G}{\partial x}\right)_{T, P}=\left(\frac{\partial H}{\partial x}\right)_{T, P}-T\left(\frac{\partial S}{\partial x}\right)_{T, P}=\left(\frac{\partial H}{\partial x}\right)_{T, P}+T\left(\frac{\partial F}{\partial T}\right)_{x, P}$,
$\left(\frac{\partial H}{\partial x}\right)_{T, P}=F+T\left(\frac{\partial S}{\partial x}\right)_{T, P}=(a T+b) x+T(-a x)=a T x+b x-T a x=b x$
$\Longrightarrow H(x)=\int b x d x=\frac{1}{2} b x^{2}$.
(e) The entropy of the molecule has to decrease when x decreases (we press on the molecule). Thus, the coefficient a has to be negative for $a<0$, and
$\left(\frac{\partial H}{\partial x}\right)_{T, P} \ll T\left(\frac{\partial F}{\partial T}\right)_{x, P}$,
$b x \ll a T x$,
$b \ll a T<0$.
b is more negative than $a T$.

15. Gibbs-Helmholtz equation.

From the definition of $G=H-T S$, derive the Gibbs-Helmholtz equation

$$
\frac{\partial}{\partial T}\left(\frac{G}{T}\right)=-\frac{H}{T^{2}}
$$

which relates the temperature variation of the Gibbs free energy G to the enthalpy H.

Starting with $G=H-T(\partial G / \partial T)_{p, N}$, and multiplying both sides by $\left(-1 / T^{2}\right)$,
$-\frac{G}{T^{2}}-\frac{1}{T}\left(\frac{\partial G}{\partial T}\right)_{p, N}=-\frac{H}{T^{2}}$,
$\frac{\partial}{\partial T}\left(\frac{G}{T}\right)=-\frac{H}{T^{2}}$.

16. Surface tension components.

The following figure shows the surface tension of water as a function of temperature:

(Redrawn from data in CRC Handbook of Chemistry and Physics, 47th edition, RC Weast, ed., The Chemical Rubber Company, Cleveland, OH, 1962.)
(a) From the figure, determine the numerical value of $(\partial \gamma / \partial T)_{p, N, A}$, where $T=$ temperature, $p=$ pressure, and $a=$ surface area.
(b) Find the Maxwell relation for the partial derivative equal to $(\partial \gamma / \partial T)_{p, N, A}$.
(c) Write an expression for the enthalpic and entropic components of the surface tension γ.
(d) Combining the results from above, compute the numerical values of the enthalpic and entropic parts of γ at $T=300 \mathrm{~K}$, and comment on which component dominates the surface tension.
(a) From the slope,

$$
\frac{\partial \gamma}{\partial T}=-0.15 \mathrm{dyn} \mathrm{~cm}^{-1} \mathrm{deg}^{-1} .
$$

(b) Use Equation (9.5) from Example 9.2 to get the appropriate cross term:

$$
\left(\frac{\partial \gamma}{\partial T}\right)_{p, N, A}=-\left(\frac{\partial S}{\partial A}\right)
$$

(c)

$$
\gamma=\left(\frac{\partial G}{\partial a}\right)_{T, p, N}=\left(\frac{\partial H}{\partial a}\right)_{T, p, N}-T\left(\frac{\partial S}{\partial a}\right)_{T, p, N}
$$

(See Equation (9.20) in Example 9.5 for an equivalent problem.)
(d)

$$
\begin{aligned}
\text { Entropic part } & =-T \frac{\partial S}{\partial a}=T \frac{\partial \gamma}{\partial T}=300 \mathrm{~K} \times\left(-0.15 \mathrm{dyn} \mathrm{~cm}^{-1} \mathrm{deg}^{-1}\right) \\
& =45 \mathrm{dyn} \mathrm{~cm}^{-1}
\end{aligned}
$$

(e) At $T=300 \mathrm{~K}, \gamma \approx 70 \mathrm{dyn}_{\mathrm{cm}}{ }^{-1}$, so the enthalpic part is

$$
\frac{\partial H}{\partial a}=\gamma-T \frac{\partial \gamma}{\partial T}=70-45=25 \mathrm{dyn} \mathrm{~cm}^{-1} .
$$

Therefore, the surface tension of water is dominated by entropy. This is because water is a structured liquid.

17. Exploring the quantity F / T.

Sometimes a quantity of interest is the Helmholtz free energy $F(T, V, N)$ divided by T. (For example, this quantity is proportional to the logarithms of equilibrium constants or solubilities.)
(a) Derive a relationship showing that

$$
\frac{\partial(F / T)}{\partial T} \propto U
$$

Find the constant of proportionality.
(b) Suppose $F(T)$ depends on temperature in the following way: $F(T)=2 a T^{2}+b T$ (so $F / T=2 a T+b)$. Find $S(T)$ and $U(T)$.

