
so we have

∂

∂T

(
∂U

∂V

)
= 0 =⇒ ∂

∂V

(
∂U

∂T

)
=
∂CV
∂V

= 0,

which shows that CV is independent of V .

4. Using Maxwell’s relations.

Show that (∂H/∂p)T = V − T (∂V/∂T )p.

Start with dH = T dS + V dp.

Now divide by dp, holding T constant:

dH

dp
[at constant T ] =

(
∂H

∂p

)

T

= T

(
∂S

∂p

)

T

+ V.

Use the Maxwell relation (Table 9.1 of the text),

(
∂S

∂p

)

T

= −
(
∂V

∂T

)

p

to get the result

(
∂H

∂p

)

T

= −T
(
∂V

∂T

)

p

+ V.
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5. Pressure dependence of the heat capacity.

(a) Show that, in general, for quasi-static processes,

(
∂Cp
∂p

)

T

= −T
(
∂2V

∂T 2

)

p

.

(b) Based on (a), show that (∂Cp/∂p)T = 0 for an ideal gas.

(a) Begin with the definition of the heat capacity,

Cp =
δq

dT
= T

dS

dT
,

for a quasi-static process. Take the derivative:

(
∂Cp
∂p

)

T

= T

(
∂2S

∂p∂T

)
= T

(
∂2S

∂T∂p

)
(1)

since S is a state function. Substitute the Maxwell relation
(
∂S

∂p

)

T

= −
(
∂V

∂T

)

p

into Equation (1) to get

(
∂Cp
∂p

)

T

= −T
(
∂2V

∂T 2

)

p

.

(b) For an ideal gas, V (T ) = NkT/p, so

(
∂V

∂T

)

p

=
Nk

p
,

(
∂2V

∂T 2

)

p

= 0,

and therefore, from part (a),

(
∂Cp
∂p

)

T

= 0.
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(a) dU = T dS + P dV + μ dN + F dx,

dG = −S dT + V dP + F dx,

F =

(
∂G

∂x

)

T,P

,

G(x) =
∫

(aT + b)x dx = 1
2
(aT + b)x2.

(b)

(
∂S

∂x

)

T,P

= −
(
∂F

∂T

)

x,P

,

(c)

(
∂S

∂x

)

T,P

= −
(
∂F

∂T

)

x,P

= −ax,

S(x) =
∫
−ax dx = −1

2
ax2.

(d) F =

(
∂G

∂x

)

T,P

=

(
∂H

∂x

)

T,P

− T
(
∂S

∂x

)

T,P

=

(
∂H

∂x

)

T,P

+ T

(
∂F

∂T

)

x,P

,

(
∂H

∂x

)

T,P

= F + T

(
∂S

∂x

)

T,P

= (aT + b)x+ T (−ax) = aTx+ bx− Tax = bx

=⇒ H(x) =
∫
bxdx = 1

2
bx2.

(e) The entropy of the molecule has to decrease when x decreases (we press on the
molecule). Thus, the coefficient a has to be negative for a < 0, and
(
∂H

∂x

)

T,P

� T

(
∂F

∂T

)

x,P

,

bx� aTx,

b� aT < 0.

b is more negative than aT .

15. Gibbs–Helmholtz equation.

From the definition of G = H − TS, derive the Gibbs–Helmholtz equation

∂

∂T

(
G

T

)
= −H

T 2
,

which relates the temperature variation of the Gibbs free energy G to the enthalpy H.
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Starting with G = H − T (∂G/∂T )p,N , and multiplying both sides by (−1/T 2),

− G
T 2
− 1

T

(
∂G

∂T

)

p,N

= −H
T 2

,

∂

∂T

(
G

T

)
= −H

T 2
.

16. Surface tension components.

The following figure shows the surface tension of water as a function of temperature:

0 50 100

70

80

50

60

T ( C)

γ (dyn cm−1)

(Redrawn from data in CRC Handbook of Chemistry and Physics, 47th edition, RC Weast, ed.,

The Chemical Rubber Company, Cleveland, OH, 1962.)

(a) From the figure, determine the numerical value of (∂γ/∂T )p,N,A, where T =
temperature, p = pressure, and a = surface area.

(b) Find the Maxwell relation for the partial derivative equal to (∂γ/∂T )p,N,A.

(c) Write an expression for the enthalpic and entropic components of the surface tension γ.

(d) Combining the results from above, compute the numerical values of the enthalpic and
entropic parts of γ at T = 300 K, and comment on which component dominates the
surface tension.

(a) From the slope,

∂γ

∂T
= −0.15 dyn cm−1 deg−1.

(b) Use Equation (9.5) from Example 9.2 to get the appropriate cross term:
(
∂γ

∂T

)

p,N,A

= −
(
∂S

∂A

)
.
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(c)

γ =

(
∂G

∂a

)

T,p,N

=

(
∂H

∂a

)

T,p,N

− T
(
∂S

∂a

)

T,p,N

.

(See Equation (9.20) in Example 9.5 for an equivalent problem.)

(d)

Entropic part = −T ∂S

∂a
= T

∂γ

∂T
= 300 K× (−0.15 dyn cm−1 deg−1)

= 45 dyn cm−1.

(e) At T = 300 K, γ ≈ 70 dyn cm−1, so the enthalpic part is

∂H

∂a
= γ − T ∂γ

∂T
= 70− 45 = 25 dyn cm−1.

Therefore, the surface tension of water is dominated by entropy. This is because water is a
structured liquid.

17. Exploring the quantity F/T .

Sometimes a quantity of interest is the Helmholtz free energy F (T, V,N) divided by T .
(For example, this quantity is proportional to the logarithms of equilibrium constants or
solubilities.)

(a) Derive a relationship showing that

∂(F/T )

∂T
∝ U .

Find the constant of proportionality.

(b) Suppose F (T ) depends on temperature in the following way: F (T ) = 2aT 2 + bT (so
F/T = 2aT + b). Find S(T ) and U(T ).

111


