
Chapter 6
Thermodynamic Driving Forces

1. One-dimensional lattice.

You have a one-dimensional lattice that contains NA particles of type A and NB particles
of type B. They completely fill the lattice, so the number of sites is NA +NB.

(a) Express the entropy S(NA, NB) as a function of NA and NB.

(b) Give the relationship between the chemical potential μA and the quantity
(∂S/∂NA)NB

.

(c) Express μA(NA, NB) as a function of NA and NB.

(a) W (NA, NB) =
(NA +NB)!

NA!NB!
,

S = k lnW = k [(NA +NB) ln(NA +NB)−NA lnNA −NB lnNB] .

(b) dS =
1

T
dU +

P

T
dV − μA

T
dNA −

μB
T
dNB,

μA
T

= −
(
∂S

∂NA

)

NB ,U,V

.

(c)

(
∂S

∂NA

)

NB

= k [ln(NA +NB) + 1− lnNA − 1] = −k ln
(

NA

NA +NB

)
,

μA = kT ln
(

NA

NA +NB

)
= kT lnC,

where C is the mole fraction concentration of A’s in B’s.
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(c)

ΔS = N1k ln
(
V2
V1

)
+ (N2 −N1)k lnV2

= k(N1 lnV2 −N1 lnV1 +N2 lnV2 −N1 lnV2)

= k(N2 lnV2 −N1 lnV1).

(d)

ΔS = (N2 −N1)k lnV1 +N2k ln
(
V2
V1

)

= k(N2 lnV2 −N1 lnV1).

4. Compute ΔS(V ) for an ideal gas.

What is the entropy change if you double the volume from V to 2V in a quasi-static
isothermal process at temperature T?

ΔS = S2 − S1 = Nk ln
(

2V

V

)
= Nk ln 2.
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Chapter 7
The Logic of Thermodynamics

1. The work of compression.

One mole of a van der Waals gas is compressed quasi-statically and isothermally from volume
V1 to V2. For a van der Waals gas, the pressure is

p =
RT

V − b −
a

V 2
,

where a and b are material constants, V is the volume, and RT is the gas constant ×
temperature.

(a) Write the expression for the work done.

(b) Is more or less work required than in the low-density limit than for an ideal gas? What
about the high-density limit? Why?

(a) w = −
∫ V2

V1
pextdV. In a quasi-static process,

pext = pgas =
RT

V − b −
a

V 2
,

w =
∫ V2

V1

[(−RT
V − b

)
+
(
a

V 2

)]
dV = −RT ln

(
V2 − b
V1 − b

)
− a

(
1

V2
− 1

V1

)
.

(b) For large volumes, the logarithm term is small and for, V2 < V1,

−a
(

1

V2
− 1

V1

)
< 0.

Therefore less work is required to compress a real gas. The van der Waals gas has
internal attractive energy, which aids compression. On the other hand, when the
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volumes are small (high densities), the logarithm term is dominant and the van der
Waals gas has stronger repulsion; in that case, more work is required to compress it
than an ideal gas.

2. Deriving the ideal gas law in two dimensions.

Molecules at low density on a surface, such as surfactants at an interface of air and water, of-
ten obey a two-dimensional equivalent of the ideal gas law. The two-dimensional equivalent
of p is π, where π is a lateral two-dimensional pressure. A is area. Using

π = T

(
∂S

∂A

)

N

and assuming no energetic interactions, derive the two-dimensional equivalent of the ideal
gas law by using a lattice model in the low-density limit.

As in the three-dimensional problem, we consider the N molecules randomly distributed on a
lattice of M sites. In this case, we use a two-dimensional lattice. There are M possible
placements for the first particle, M − 1 possible placements for the second particle, M − 2 for
the third, and so on. Therefore the number of arrangements, W , is

W =
(M !)

(M −N)!N !
.

We use the Boltzmann equation

S = k lnW = k ln

[
M !

(M −N)!N !

]

and Stirling’s approximation (x! ≈ (x/e)x) to get

S = k ln

[
MM

(M −N)M−NNN

]
= −k

[
N ln

(
N

M

)
+ (M −N) ln

(
M −N
M

)]
.

Using the thermodynamic expression given in the problem,

π = T

(
∂S

∂A

)

U,N

; also,

(
∂S

∂A

)

U,N

=

(
∂S

∂M

)(
∂M

∂A

)
,
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6. The work in a thermodynamic cycle.

A thermodynamic cycle is a series of steps that ultimately returns to its beginning point.
Compute the total work performed around the thermodynamic cycle of quasi-static processes
in the figure below.

p (atm)

V (cm3)

100

300

1 2

A

B C

D

Step 1

Step 2

Step 3

Step 4

Using Equation (7.12) of the text, we have

W = −
∫ B

A
p dV −

∫ C

B
p dV −

∫ D

C
p dV −

∫ A

D
p dV

= 0− (300 atm)(2 cm3 − 1 cm3)− 0− (100 atm)(1 cm3 − 2 cm3)

= −(200 atm cm3)× (2.422× 10−2 cal cm−3 atm−1) = −4.84 cal

Since steps 1 and 3 involve no volume change, there is no work performed during those steps.

7. Engine efficiencies.

Consider a Carnot engine that runs at Th = 380 K.

(a) Compute the efficiency if Tc = 0◦C = 273 K.

(b) Compute the efficiency if Tc = 50◦C = 323 K.

Equation (7.38) of the text gives

η = 1− Tc
Th
.
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(a) η = 1− 273

380
= 28% efficient.

(b) η = 1− 323

380
= 15% efficient.

A big difference!

8. Hadley cycles—what powers the trade winds?

The Earth’s trade winds arise from the differences in buoyancy between hot air and cold air.
Air is heated at the Earth’s surface near the equator (see (1) in the figure below), lowering
its density; the air rises (2), pushing upper air away toward the Northern latitudes, where
the air cools (3); then the air drops back down to Earth (4), pushing the cold surface air
back toward the equator.

N

4 3

21

4 3

Consider an imaginary balloon containing 1m3 of an ideal gas.

(a) At p = 1 atm and T = 300K, what is the number of moles n of air contained in the
balloon?

(b) If that balloon of n moles of air remains at p = 1 atm but is now heated to T = 330K,
its volume increases. What is the new density ρ = n/V ?

(c) Assuming no heat transfer, how high will the balloon in part (b) rise? Use Figure 10.2
in the text to make a rough guess. (Useful conversion: 1 atm ≈ 1 bar.)
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