of the factor $(n-1)$ in the exponent of the above equation, where n can be greater than 10^{3}; this resulted in explosions in the early days of polymer chemistry.
(c) The van't Hoff relation gives (approximately)

$$
\frac{\partial \ln K}{\partial \mathrm{~T}}=\frac{\Delta h^{\circ}}{k T^{2}}=\frac{(n-1) \Delta \varepsilon_{0}}{k T^{2}}
$$

so the slope of $\ln K$ versus T gets steeper as n gets larger. Hence, the formation of longer chains is more sensitive to temperature than that of shorter chains.

6. Hydrogen ionization.

A hydrogen atom can ionize in the gas phase:

$$
\mathrm{H} \xrightarrow{K} \mathrm{H}^{+}+e^{-} .
$$

Calculate the equilibrium constant K for temperature $T=5000 \mathrm{~K}$. There is no rotational or vibrational partition function for $\mathrm{H}, \mathrm{H}^{+}$, or e^{-}, but there are spin partition functions: $q_{s}=1$ for H^{+}and $q_{s}=2$ for $e^{-} . \Delta D=-311 \mathrm{kcal} \mathrm{mol}^{-1}$.

$$
\begin{aligned}
& K_{p}=\frac{q_{\mathrm{H}+} q_{e^{-}}}{q_{\mathrm{H}}} e^{-\Delta \varepsilon_{0} / k T} \\
&=k T \frac{\left(\frac{2 \pi m_{\mathrm{H}}+k T}{h^{2}}\right)^{3 / 2}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} e^{-\Delta \varepsilon_{0} / k T}}{\left(\frac{2 \pi m_{\mathrm{H}} k T}{h^{2}}\right)^{3 / 2}} \\
&=k T\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} e^{-\Delta \varepsilon_{0} / k T} \\
&\left.=\frac{\left(8.21 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~atm} \mathrm{~K}\right.}{} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)(5000 \mathrm{~K}) \\
& 6.02 \times 10^{23} \mathrm{molecules} \mathrm{~mol}^{-1} \\
&=\left(\frac{(2 \pi)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)(5000 \mathrm{~K})}{\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}\right]^{3 / 2} e^{-311,000 / 9935} \\
&=1.48 \times 10^{-11} \mathrm{~atm} .
\end{aligned}
$$

8. Pressure denaturation of proteins.

For a typical protein, folding can be regarded as involving two states, native (N) and denatured (D) :

$$
N \xrightarrow{K} D .
$$

At $T=300 K, \Delta \mu^{\circ}=10 \mathrm{kcal} \mathrm{mol}^{-1}$. Applying about $10,000 \mathrm{~atm}$ of pressure can denature a protein at $T=300 \mathrm{~K}$. What is the volume change Δv for the unfolding process?

We assume here that with the added $10,000 \mathrm{~atm}$ pressure, $K_{2}=1 \Longrightarrow \Delta \mu_{2}^{\circ}=0$. Therefore, following Example 13.8,

$$
\begin{aligned}
\Delta v= & v_{D}-v_{N}=-\frac{R T\left(\ln K_{2}-\ln K_{1}\right)}{\Delta p}=-\frac{R T\left(-\frac{\Delta \mu_{2}^{\circ}}{R T}-\frac{\Delta \mu_{1}^{\circ}}{R T}\right)}{\Delta p} \\
= & -\frac{(0+10,000) \mathrm{cal} \mathrm{~mol}^{-1}}{10,000 \mathrm{~atm}}\left(\frac{8.21 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}{2 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\right) \\
& \times\left(\frac{10^{10} \AA}{1 \mathrm{~m}}\right)^{3}\left(\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecules }}\right) \\
= & 68 \AA^{3} \text { molecule }^{-1} .
\end{aligned}
$$

Since a protein may have about 100 amino acids, and each amino acid has a volume of about $100 \AA^{3}$, the volume of a protein is about $10^{4} \AA^{3}$. Hence, Δv is a small change.

9. Clusters.

Sometimes isolated molecules of type A can be in a two-state equilibrium with a cluster of m monomers, $m A \xrightarrow{K} A_{m}$, where A_{m} represents an m-mer cluster.
(a) At equilibrium, what is the relationship between μ_{1}, the chemical potential of the monomer, and μ_{m}, the chemical potential of A in the cluster?
(b) Express the equilibrium constant K in terms of the partition functions.
(a) Use Equation (13.15) of the text with $a=m, b=0, c=1$ to get $\mu_{m}=m \mu_{1}$
(b) Equation (13.17) gives $K=\left(\frac{q_{m}}{q_{1}^{m}}\right) e^{-\Delta \varepsilon_{0} / k T}$.

Chapter 14
 Phase Equilibria

1. Applying the Clausius-Clapeyron equation.

(a) The vapor pressure of water is 23 mmHg at $T=300 \mathrm{~K}$ and 760 mmHg at $T=373 \mathrm{~K}$. Calculate the enthalpy of vaporization $\Delta h_{\text {vap }}$.
(b) Assuming that each water has $z=4$ nearest neighbors, calculate the interaction energy $w_{A A}$.
(a) $\ln \left(\frac{p_{2}}{p_{1}}\right)=-\frac{\Delta h_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$

$$
\begin{aligned}
& \Longrightarrow \frac{\ln \left(\frac{760}{23}\right)}{\left(\frac{1}{373}-\frac{1}{300}\right)}\left(1.987 \mathrm{cal} \mathrm{~mol}^{-1}\right)=-\Delta h_{\text {vap }} \\
& \Longrightarrow \Delta h_{\text {vap }}=10.653 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

(b) Since

$$
\begin{aligned}
-\frac{z w}{2} & =\Delta h_{\text {vap }}, \\
w & =-\frac{\Delta h_{\text {vap }}}{2} \approx-5.3 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

8. Sublimation of graphite.

The heat of sublimation of graphite is $\Delta h_{\text {sub }}=716.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Use this number to estimate the strength of a carbon-carbon bond.

Equation (14.22) of the text applies to sublimation as well as to vaporization, so

$$
\Delta h_{\mathrm{sub}}=-\frac{z w_{A A}}{2} .
$$

In graphite, carbon is in the $s p^{2}$ hybridization state, with three bonds and a delocalized π bond. For simplicity, we take $z=4$ neighbors, so

$$
w_{A A}=-\frac{\Delta h_{\mathrm{sub}}}{2}=-358.35 \mathrm{~kJ} \mathrm{~mol}^{-1}=-85.6 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

The experimental value of a $\mathrm{C}-\mathrm{C}$ single bond is $-342 \mathrm{~kJ} \mathrm{~mol}^{-1}$, but it can typically vary from about -300 to $-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$, depending on neighboring bond substituent effects.

9. Surface tension of mercury.

The surface tension of water is $72 \mathrm{erg} \mathrm{cm}^{-2}$ and that of liquid mercury is $487 \mathrm{erg} \mathrm{cm}^{-2}$. If the water-water attraction is about $5 \mathrm{kcal} \mathrm{mol}^{-1}$, what is the mercury-mercury attraction?

$$
\begin{aligned}
\frac{w_{A A_{2}}}{w_{A A_{1}}} & =\frac{\gamma_{2}}{\gamma_{1}} \\
\Longrightarrow w_{A A_{\mathrm{Hg}}} & =\left(\frac{487}{72}\right)\left(5 \mathrm{kcal} \mathrm{~mol}^{-1}\right)=33 \mathrm{kcal} \mathrm{~mol}^{-1} .
\end{aligned}
$$

10. Squeezing ice

Use the Clapeyron relation to compute the pressure that is required to lower the melting temperature of ice by 10 K . For water, $\Delta h=6.008 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta v=-1.64 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

$$
\begin{aligned}
\int_{P_{1}}^{P_{2}} d P & =\frac{\Delta h}{\Delta v} \int_{T_{1}}^{T_{2}} \frac{d T}{T}, \\
P_{2} & =P_{1}+\frac{\Delta h}{\Delta v} \ln \left(\frac{T_{2}}{T_{1}}\right) .
\end{aligned}
$$

The melting temperature of water at 1 atm is 273.15 K .

$$
\begin{aligned}
& P_{2}=1.013 \times 10^{5} \mathrm{~Pa}+\frac{6.008 \times 10^{3} \mathrm{~J}}{-1.64 \times 10^{-6} \mathrm{~m}^{3}} \ln \left(\frac{263.15}{273.15}\right), \\
& P_{2}=1.366 \times 10^{8} \mathrm{~Pa}\left(\frac{1 \mathrm{~atm}}{1.013 \times 10^{5} \mathrm{~Pa}}\right)=1348 \mathrm{~atm}=0.137 \mathrm{~kJ} \mathrm{~cm}^{-3} .
\end{aligned}
$$

