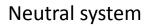
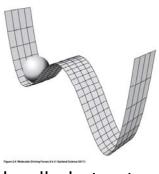
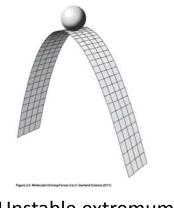

CHAPTER 2 EXTREMUM PRINCIPLES


Tendency of systems to minimize E, maximize S



From web page of W. Hase, Texas Tech

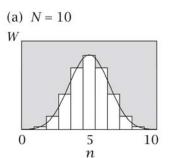


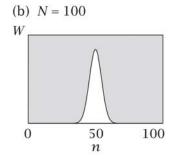
locally, but not globally stable

Unstable extremum

At equilibrium, force = 0

$$f = -\frac{\partial V}{\partial x}$$
, V = potential


so if
$$V = \gamma x^2$$
 $f = -2\gamma x \longrightarrow 0$, at an extremum


Most Probable Outcome → Maximizes Multiplicity

Consider the coin toss example

Which is more likely 4H's or 3H's and 1T?

	<u>W</u>	$\ell n \mathbf{W}$	
4H0T	1	0	
3H1T	4	1.39	most — probable outcome
2H2T	6	1.79 ←	
1H3T	4	1.39	
OH4T	1	0	

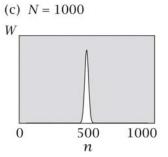


Figure 2.6 Molecular Driving Forces 2/e (© Garland Science 2011)

As the sample grows the distribution becomes more narrowly peaked

$$W(n,N) = \frac{N!}{n!(N-n)!}$$
 becomes increasingly peaked with growing N

e.g., N = 100 # sequences
$$50H,50T = \frac{100!}{50!50!} = 1.01x10^{29}$$
 huge difference
$$75H25T = \frac{100!}{25!75!} = 2.43x10^{23}$$

to maximize W calculate
$$\frac{\partial W}{\partial n}$$

what value of n* causes this to be zero?

$$n^* = \frac{N}{2}$$
 For the coin flip problem

Systems tend to be found in states with maximum multiplicity.

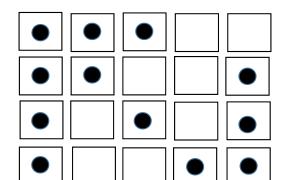
Maximum multiplicity explains expansion of gases tendency of atoms/molecules to diffuse

Many of the key ideas can be illustrated by lattice models in which sites are either occupied or empty

Simpler to work with than problems with continuous variables

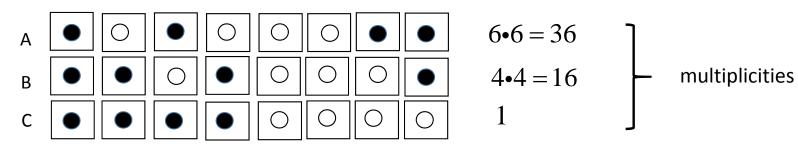
Simple lattice model to understand why gases expand (exert pressure)

Suppose there are three volumes possible 3, 4, or 5


$$Vol = M_5$$
 $W = 10$ $p_A = 10/15$
 $Vol = M_4$ $W = 4$ $p_B = 4/15$

$$Vol = M_3$$
 $W = 1$ $p_C = 1/15$

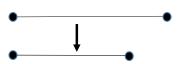
A, B, C macrostates made up of 1 or more microstates


all microstates equally probable

A slightly different way of seeing that it is favorable for the gas to spread out

More likely to be spread out than to be bunched at one side

Next consider a model that explains why gasses diffuse



White and black spheres denote different atoms

If we start with C, the system will evolve towards A

More arrangements when the two species are randomized

Stretched rubber band More favorable to be unstretched. Why?

Systems tend toward maximum entropy

In Chapter 5 we will show that

entropy
$$S = \ell nW$$

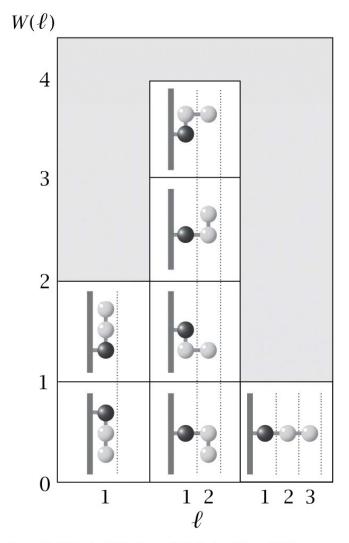


Figure 2.9 Molecular Driving Forces 2/e (© Garland Science 2011)