CHAPTER 11 —Energy Levels

In Chapter 10 we learned about energy distributions and ensembles. In chapter 11 we build on those ideas by
using simple models for a gas molecule’s (or atom’s) ladder of energy levels.

Salient points from Chapter 10

x‘p(—i

z!exp(—i Eqn 10.9

1) Eqn 10.2: U=<E>=},p;E; wherep; =

[
2) Eqn 10.10: Q = X exp (L)

For independent subsystems (i.e., gas atoms or molecules),
Q=gN if distinguishable (Eqn10.28); and Q=qg"/N! if distinguishable (Eqn 10.30)

3) We can calculate thermodynamic functions and properties from the partition function
Eqn10.35: <E>=U= sz |2

Eqn10.39: S=kinQ+ ;

Can use thermodynamic definitions (such as F=U-TS) and relationships (suchasp = — (:_5)) to find
the rest; see Table 10.1 for some examples
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A potential energy diagram for the one-dimensional particle in a box is
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What about a 3D box?

For 3D box of sides of length a, b, and ¢, the energy can be written as

_ nyh? ny?h? n,2p?
" 8ma?z 8mb?  8mc?

a"x;ﬂy:ﬂz

So that q,, is a product of three one dimensional translational partition functions

27mkT 2 27mkT Y2V
q, — 0,4,d, = h2 abc = h2 \ :F

For Argon T=273K,V=224x102m3for1mole, p=1atm

Q, = 2.14x10%°V = 4.79x10*  states/atom

Even for the lightest molecules, H,, this approximation is good at room temperature

A =0.714 A for H,@T =300 K sothat g, =2.7 x 102 states per molecule



What is the average energy of a monatomic ideal gas atom?

Use the translational partition function to prove that the average energy of an ideal monatomic gas atom
given by 1.5k T.
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Use <g, >=kT? (% Eqn10.36 and g = zmw)
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What about ideal gas molecules ?

A potential energy surface is sketched for the ground electronic state
of a diatomic molecule.

Assume separability for different degrees of freedom
=
— =
gj - gj,trans + gj,rot + gj,vib + gj,elec HT-;
5
IS
For their partition functions we find 21 n =0

T ;
R, distance

M
q = Z gi EXp(- B (gj,trans + gj,rot + 8j,vib + 8j,elec)) = qtrans qrot qvib qelec
I

The average energies become

<8>:<8trans>+<8rot>+<8vib>+<8 >

elec



Can we find q,,..?

Each molecule (or atom) has its own unique ladder of electronic energy states. Thus, we have no simple model
and we must evaluate the electronic partition function sum explicitly.

Gei = Z g; e s/kT
i=1

—Ag /KT —Ag, KT

0 =0,+0,¢€ +0,€ T
degeneracies Fortunately, most electronic
states are separated from the
ground state by a large energy
H, g,=1, H g,=2 (considering L, S) gap, so that w.e only need to
evaluate the first term, or the
NO g,=2, O ¢,=9 . . .
first few terms in the partition
O, g,=3 °P, 0.03eV function summation.
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For q,,, we can find a closed for expression in the harmonic oscillator approximation

Vibration model

&y =(V+%)h0, v=0,12,... V(x)
1 K m,m,
U="—,]" = , Where k = force constant
2\ u m, +m, —_
A x=0

i
G = Ze"*"” =l+x+at., x=e™" where k = Boltzmann constant
n

0,: T=298K, g, = 1.0005
T =1000K, g, = 1.11

Start zero from
ground vibrational
level.



Finding the average vibrational energy of a diatomic

The average energy is given by

1 1

ol

<Eyip > = kT2 (%) and Quib = 1-x - 1— g ho/kT

o> = Gin K € _ hv e where 8,,;, = hv/k

(L-exp(-6in/T))  (L-exp(-Gin/T)) O, Oouy = 2256K

T= 298K, <g,, >=0.814 cm?
T =1000K, <&,,, > =183 cm?

In the high temperature limit, we find that q,;,, > kT/hnu and <g¢ > =KT.
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Populations in vibrational energy levels of diatomics
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This figure shows the fractional population of vibrational levels for FCI (o), FBr (A), ICl (0), and IBr (e).



Can we find q,,, for rotational energy levels ?

5 . ((E+1) 2 __F
Rigid rotor model: g, =—air B = S lk
G = 2 (2041) 7Y
i)
forT>>40,,
T 82°IkT

_ [~ —g)IKT 4
Uyt —jo (20+1)e ™ de = gy

0, 298K, q, =72

For nonlinear molecules

JrLLL (8T
O

Orot = h?

__angular momentum
quantum #

= moment of inertia

o= symmetry factor (accounts for
overcounting of states)

A-B o=1

H A-A o=2

c H,O o=2
AR CH, o=12
_I C6H6 0:12



Populations in rotational energy levels of diatomics

(2J+1)exp(—J(J+l) g_flf‘j
0.04 71 FCI fy = Ir|]\J| - Q.
0.03
fy 0.02 -
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0.00

The population distribution of rotational energy levels is shown here for four interhalogen molecules.



Let’s put the pieces together and build the total partition function

q — qtr qrot qvibqel

Consider a linear diatomic with g, =1

27mkT V2 ((872IKT 1
q= h? v oh? 1Mokt

Ideal gas (indistinguishable particles) gn{qN }

N
F =—kT/nQ =—KkT/n (%} =—NKkT/n (ﬂj using Stirling’s
) N approximation

N!
=N/nq—-N/nN + N
=N/ng—N/n(N)+N/n(e)

= Nén(%j
F =-NiT [ine+ing-inN|, ¢g=gV
F =—NKT [ine+ing, +inV — fniV|




Now we can find thermodynamic relations

1) Use F = —Nkf[fﬂﬂ +£ng, + in¥V - -EH.N] to find the ideal gas equation of state

eF NET
= =] — =4 — V = NKT
? [W]m- 2
2 ﬂfnq . .
2) Use U = NkT ? to find the internal energy
N 3 3(2) 3n-6(5) Nh Vi
U=<E>=) <&y, > NkT+Z NkT+Z( e 'J-NDO
i=1 i=1 \ e -

3) For the constant volume heat capacity we find

- —Nk+z Nk+Z(Nk)

_ (a <E >j 3 3(2) 1 3n-6(5)
CV -
\%



In Class Problem

A. The heat capacities of Ne and Xe are the same at T = 300 K! What is the value of their constant
volume heat capacity? Why are their heat capacities the same?

B. The heat capacity of a diatomic gas is always higher than that of a monatomic gas, if the total
mass is the same and if the conditions are similar. Why is the heat capacity of a diatomic gas higher
and what range of values may it take?

C. The heat capacity of molecules is temperature dependent, even for an ideal gas of molecules.
Explain why this is so!
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We can calculate the Entropy

N
<S>:k|nq +<E>:k|nQ+<E>:k|nQ+kT(aanj
N! T T oT )y
3/2
Useq=£%j VvV <E>:§NkT
h 2

T +— Nk

to show that <S> = Nkln[(znka)Slzve} 2

or

3/2
<S> = gNk+Nkln[(Mj \N/

— | = ENkInM +§NkInT+NkInV+K'
h? 2 2



In Class Problem

Consider the absolute entropies for the gases shown on
the right. Explain the trend in the entropies for the
monatomic series of gases.

He
Ne
Ar
Kr
Xe

126.0
146.2
154.7
164.0
170.0
175.0



We can calculate the chemical potential of an ideal gas

y=(ﬁj __ 9 NkTen[ﬂj =—kT5n(ﬂj+NkTi
N )., oN N N N

— KT /n (ﬁj KT = —KT/n (ﬂj
eq N

g, NkT

If we write G=qy =

with Pi = QoKT

then we find that 4 = —kTﬁn[qokT j =kTin

N
p Pl

P = standard state pressure

In an alternative form, we find

Lo =—KTInpY = = p° +KT np #° = standard state chemical potential



Equipartition theorem

Z e ( X) e—g(x)/kT

(&)
J_i & ( X) e—g(x)/kT dx

e—S(X)/kT dX

(c)=

Suppose 8(X) =cx’?
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o\ KT .
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only holds at very high T



Einstein model of solids

C, =3Nk

N atoms = Dulong + Peit equipartition

actualatlow 7,C, =0 (as explained by Einstein)

Einstein: solid = 3N oscillators

e\l e M
q=(1-e"™) —>(g>:hv(1_eﬁhvj

___— OasT—>0

2 —hv/KT
C =3N 6<8>=3Nk(hv) ©
oT (

v —hv/kT )2 _
KT (1-e™7) \3Nk(hvj LZWIKT 13Nk asT -0
KT )\ 1-1+ (hv/KT)

actually C, ~T°> atlowT

(explained by Debye model)



