CHEM 1410 HW # 7

P10.2) Classify the following functions as symmetric, antisymmetric, or neither in the exchange of electrons 1 and 2:

a) $[1s(1)2s(2)+2s(1)1s(2)][\alpha(1)\beta(2)-\beta(1)\alpha(2)]$

$$\begin{bmatrix} 1s(2)2s(1) + 2s(2)1s(1) \end{bmatrix} \begin{bmatrix} \alpha(2)\beta(1) - \beta(2)\alpha(1) \end{bmatrix} = -\begin{bmatrix} 1s(1)2s(2) + 2s(1)1s(2) \end{bmatrix} \begin{bmatrix} \alpha(1)\beta(2) - \beta(1)\alpha(2) \end{bmatrix}$$

Therefore the function is antisymmetric in the exchange of electrons 1 and 2.

b) $[1s(1)2s(2)+2s(1)1s(2)]\alpha(1)\alpha(2)$

 $\begin{bmatrix} 1s(2)2s(1) + 2s(2)1s(1) \end{bmatrix} \alpha(2)\alpha(1) = \begin{bmatrix} 1s(1)2s(2) + 2s(1)1s(2) \end{bmatrix} \alpha(1)\alpha(2)$ Therefore the function is symmetric in the exchange of electrons 1 and 2.

c)
$$[1s(1)2s(2)+2s(1)1s(2)][\alpha(1)\beta(2)+\beta(1)\alpha(2)]$$

$$\begin{bmatrix} 1s(2)2s(1) + 2s(2)1s(1) \end{bmatrix} \begin{bmatrix} \alpha(2)\beta(1) + \beta(2)\alpha(1) \end{bmatrix}$$

= $\begin{bmatrix} 1s(1)2s(2) + 2s(1)1s(2) \end{bmatrix} \begin{bmatrix} \alpha(1)\beta(2) + \beta(1)\alpha(2) \end{bmatrix}$

Therefore the function is symmetric in the exchange of electrons 1 and 2.

d)
$$[1s(1)2s(2)-2s(1)1s(2)][\alpha(1)\beta(2)+\beta(1)\alpha(2)]$$

$$\begin{bmatrix} 1s(2)2s(1) - 2s(2)1s(1) \end{bmatrix} \begin{bmatrix} \alpha(2)\beta(1) + \beta(2)\alpha(1) \end{bmatrix} = -\begin{bmatrix} 1s(1)2s(2) - 2s(1)1s(2) \end{bmatrix} \begin{bmatrix} \alpha(1)\beta(2) + \beta(1)\alpha(2) \end{bmatrix}$$

Therefore the function is antisymmetric in the exchange of electrons 1 and 2.

e)
$$[1s(1)2s(2)+2s(1)1s(2)][\alpha(1)\beta(2)-\beta(1)\alpha(2)+\alpha(1)\alpha(2)]$$

$$\begin{bmatrix} 1s(1)2s(2) + 2s(1)1s(2) \end{bmatrix} \begin{bmatrix} \alpha(1)\beta(2) - \beta(1)\alpha(2) + \alpha(1)\alpha(2) \end{bmatrix}$$

$$\neq \pm \begin{bmatrix} 1s(2)2s(1) + 2s(2)1s(1) \end{bmatrix} \begin{bmatrix} \alpha(2)\beta(1) - \beta(2)\alpha(1) + \alpha(2)\alpha(1) \end{bmatrix}$$

Therefore the function is neither symmetric or antisymmetric in the exchange of electrons 1 and 2.

P10.5) Show that the functions $\frac{\alpha(1)\beta(2) + \beta(1)\alpha(2)}{\sqrt{2}}$ and $\frac{\alpha(1)\beta(2) - \beta(1)\alpha(2)}{\sqrt{2}}$ are eigenfunctions of \hat{S}_{total}^2 . What is the eigenvalue in each case?

Solve this equation by acting on $\alpha(1)\beta(2)$ and $\beta(1)\alpha(2)$ separately, and combining the results.

$$\begin{split} \hat{S}_{total}^{2} \alpha(1) \beta(2) \\ &= \hat{S}_{1}^{2} \alpha(1) \beta(2) + \hat{S}_{2}^{2} \alpha(1) \beta(2) + 2 \left(\hat{S}_{1x} \hat{S}_{2x} \alpha(1) \beta(2) + \hat{S}_{1y} \hat{S}_{2y} \alpha(1) \beta(2) + \hat{S}_{1z} \hat{S}_{2z} \alpha(1) \beta(2) \right) \\ &= \beta(2) \hat{S}_{1}^{2} \alpha(1) + \alpha(1) \hat{S}_{2}^{2} \beta(2) + 2 \left(\hat{S}_{1x} \alpha(1) \hat{S}_{2x} \beta(2) + \hat{S}_{1y} \alpha(1) \hat{S}_{2y} \beta(2) + \hat{S}_{1z} \alpha(1) \hat{S}_{2z} \beta(2) \right) \\ &= \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + 2 \left(\hat{S}_{1x} \alpha(1) \hat{S}_{2x} \beta(2) + \hat{S}_{1y} \alpha(1) \hat{S}_{2y} \beta(2) + \hat{S}_{1z} \alpha(1) \hat{S}_{2z} \beta(2) \right) \\ &= \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + 2 \times \frac{\hbar}{2} \left(\hat{S}_{1x} \alpha(1) \alpha(2) - i \hat{S}_{1y} \alpha(1) \alpha(2) - \hat{S}_{1z} \alpha(1) \beta(2) \right) \\ &= \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + \frac{3\hbar^{2}}{4} \alpha(1) \beta(2) + 2 \times \left(\frac{\hbar}{2} \right)^{2} \left(\beta(1) \alpha(2) - i^{2} \beta(1) \alpha(2) + \alpha(1) \beta(2) \right) \\ &= \frac{3\hbar^{2}}{2} \alpha(1) \beta(2) + \frac{\hbar^{2}}{2} \left(2\beta(1) \alpha(2) + \alpha(1)\beta(2) \right) \\ &= \frac{3\hbar^{2}}{2} \alpha(1) \beta(2) + \frac{\hbar^{2}}{2} \left(2\beta(1) \alpha(2) + \alpha(1)\beta(2) \right) \\ &= \hbar^{2} \alpha(1) \beta(2) + \hbar^{2} \beta(1) \alpha(2) \end{split}$$

$$\begin{split} \hat{S}_{total}^{2} \beta(1) \alpha(2) \\ &= \hat{S}_{1}^{2} \beta(1) \alpha(2) + \hat{S}_{2}^{2} \beta(1) \alpha(2) + 2 \left(\hat{S}_{1x} \hat{S}_{2x} \beta(1) \alpha(2) + \hat{S}_{1y} \hat{S}_{2y} \beta(1) \alpha(2) + \hat{S}_{1z} \hat{S}_{2z} \beta(1) \alpha(2) \right) \\ &= \alpha(2) \hat{S}_{1}^{2} \beta(1) + \beta(1) \hat{S}_{2}^{2} \alpha(2) + 2 \left(\hat{S}_{1x} \beta(1) \hat{S}_{2x} \alpha(2) + \hat{S}_{1y} \beta(1) \hat{S}_{2y} \alpha(2) + \hat{S}_{1z} \beta(1) \hat{S}_{2z} \alpha(2) \right) \\ &= \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + 2 \left(\hat{S}_{1x} \beta(1) \hat{S}_{2x} \alpha(2) + \hat{S}_{1y} \beta(1) \hat{S}_{2y} \alpha(2) + \hat{S}_{1z} \beta(1) \hat{S}_{2z} \alpha(2) \right) \\ &= \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + 2 \times \frac{\hbar}{2} \left(\hat{S}_{1x} \beta(1) \beta(2) + i \hat{S}_{1y} \beta(1) \beta(2) + \hat{S}_{1z} \beta(1) \alpha(2) \right) \\ &= \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + \frac{3\hbar^{2}}{4} \beta(1) \alpha(2) + 2 \times \left(\frac{\hbar}{2} \right)^{2} \left(\alpha(1) \beta(2) - i^{2} \alpha(1) \beta(2) - \beta(1) \alpha(2) \right) \\ &= \frac{3\hbar^{2}}{2} \beta(1) \alpha(2) + \frac{\hbar^{2}}{2} \left(2\alpha(1) \beta(2) - \beta(1) \alpha(2) \right) \\ &= \frac{3\hbar^{2}}{2} \beta(1) \alpha(2) + \frac{\hbar^{2}}{2} \left(2\alpha(1) \beta(2) - \beta(1) \alpha(2) \right) \end{split}$$

Therefore,
$$\hat{S}_{total}^2$$
 acting on $\frac{\alpha(1)\beta(2) + \beta(1)\alpha(2)}{\sqrt{2}}$ yields

$$\frac{1}{\sqrt{2}} \left[\hbar^2 \alpha(1)\beta(2) + \hbar^2 \beta(1)\alpha(2) + \hbar^2 \alpha(1)\beta(2) + \hbar^2 \beta(1)\alpha(2) \right]$$

$$= \frac{2\hbar^2}{\sqrt{2}} \left[\alpha(1)\beta(2) + \beta(1)\alpha(2) \right]$$

The eigenvalue is $2\hbar^2$. \hat{S}_{total}^2 acting on $\frac{\alpha(1)\beta(2) - \beta(1)\alpha(2)}{\sqrt{2}}$ yields

$$\frac{1}{\sqrt{2}} \Big[\hbar^2 \alpha(1) \beta(2) + \hbar^2 \beta(1) \alpha(2) - \hbar^2 \alpha(1) \beta(2) - \hbar^2 \beta(1) \alpha(2) \Big]$$
$$= \frac{1}{\sqrt{2}} \times 0 \times \Big[\alpha(1) \beta(2) + \beta(1) \alpha(2) \Big]$$
The eigenvalue is 0

The eigenvalue is 0.

P10.11) In this problem you will show that the charge density of the filled n = 2, l = 1 subshell is spherically symmetrical and that therefore $\mathbf{L} = 0$. The angular distribution of the electron charge is simply the sum of the squares of the magnitude of the angular part of the wave functions for l = 1 and $m_l = -1$, 0, and 1.

a) Given that the angular part of these wave functions is

$$\begin{aligned} Y_{1}^{0}(\theta,\phi) &= \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta \\ Y_{1}^{1}(\theta,\phi) &= \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \ e^{i\phi} \\ Y_{1}^{-1}(\theta,\phi) &= \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \ e^{-i\phi} \\ \text{write an expression for } \left|Y_{1}^{0}(\theta,\phi)\right|^{2} + \left|Y_{1}^{1}(\theta,\phi)\right|^{2} + \left|Y_{1}^{-1}(\theta,\phi)\right|^{2} \\ &= \frac{3}{4\pi} \cos^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta \\ \text{b) Show that } \left|Y_{1}^{0}(\theta,\phi)\right|^{2} + \left|Y_{1}^{1}(\theta,\phi)\right|^{2} + \left|Y_{1}^{-1}(\theta,\phi)\right|^{2} \\ &= \frac{3}{4\pi} \cos^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta \\ \text{b) Show that } \left|Y_{1}^{0}(\theta,\phi)\right|^{2} + \left|Y_{1}^{1}(\theta,\phi)\right|^{2} + \left|Y_{1}^{-1}(\theta,\phi)\right|^{2} \\ &= \frac{3}{4\pi} \cos^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta \\ \text{b) Show that } \left|Y_{1}^{0}(\theta,\phi)\right|^{2} + \left|Y_{1}^{1}(\theta,\phi)\right|^{2} \\ &= \frac{3}{4\pi} \cos^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta + \frac{3}{8\pi} \sin^{2}\theta \\ \text{b) Show that } \left|Y_{1}^{0}(\theta,\phi)\right|^{2} \\ &= \frac{1}{4\pi} \left(\frac{1}{2}\right)^{2} \\ &= \frac{1}{4\pi} \left(\frac{1}{4}\right)^{2} \\ &= \frac{1}{4$$

$$\frac{3}{4\pi}\cos^2\theta + \frac{3}{8\pi}\sin^2\theta + \frac{3}{8\pi}\sin^2\theta = \frac{3}{4\pi}\left(\cos^2\theta + \sin^2\theta\right) = \frac{3}{4\pi}.$$
 This is not a function of θ and ϕ .

c) Why does this result show that the charge density for the filled n = 2, l = 1 subshell is spherically symmetrical?

If a function is independent of θ and ϕ , then it has the same value for all θ and ϕ . This is what we mean by being spherically symmetrical.

P10.15) Calculate the terms that can arise from the configuration $np^1n'p^1$, $n \neq n'$. Compare your results with those derived in the text for np^2 . Which configuration has more terms and why?

Because the principle quantum number is different, any combination of m_l and m_s is allowed. Therefore, S = 0, 1 and L = 0, 1, and 2. Any combination of the two quantum numbers is allowed. This leads to ¹S, ¹P, and ¹D terms as well as ³S, ³P, and ³D terms. The $np^1n'p^1$, $n \neq n'$ configuration has more terms because some of the possible terms listed above are not allowed if n = n' because of the Pauli principle.

Using the method discussed in Example Problem 10.7, $M_{Lmax} = 6$ and $M_{Smax} = 3/2$. Therefore the ground state term is ⁴I, which has $(2L + 1)(2S + 1) = (2 \times 6 + 1)(4) = 52$ states.

P10.17) How many ways are there to place three electrons into an f subshell? What is the ground-state term for the f^3 configuration, and how many states are associated with this term? See Problem P10.16.

The first electrons can have any combination of 7 m_l and 2 m_s values so that n = 14 and m = 3. The number of states is $\frac{14!}{3!(14-3)!} = 364$.

EXTRA PROBLEM

The energy levels of the hydrogen atom are given by $E = -\mu e^4/8h^2\varepsilon_0 n^2 = -13.60/n^2$. This is based on a reduced mass μ for the electron/proton system. For positronium the reduced mass is given by $\mu = m_e m_{pos}/(m_e + m_{pos}) = m_e m_e/(m_e + m_e) = m_e/2$. Thus, we can approximately give the energy level formula for the energy levels of positronium as $E = -6.80/n^2$. ($\mu \approx m_e$ for the H atom.) Therefore, $\Delta E \approx E_2 - E_1 = -1.7 - (-6.8) = 5.1$ eV.