CHEM 1410 HW \# 6
P9.4, 9.6, 9.11, 18, 24
Due Oct. 27, 2008

9.4

$\iiint_{210}^{*}(\tau) \psi_{211}(\tau) d \tau=\frac{1}{\sqrt{32} \sqrt{64} \pi a_{0}^{3}} \int_{0}^{2 \pi} e^{+i \phi} d \phi \int_{0}^{\pi} \cos \theta \sin ^{2} \theta d \theta \int_{0}^{\infty}\left(\frac{r}{a_{0}}\right)^{2} e^{-r / a_{0}} d r$

This integral is zero because $\int_{0}^{\pi} \cos \theta \sin ^{2} \theta d \theta=\left[\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi}=0-0=0$.
It is sufficient to evaluate the integral over θ.

$\underline{9.6}$

The functions have $n-l-1$ radial nodes and l angular nodes. Therefore
a) $\psi_{2 p_{x}}(r, \theta, \phi)$ has no radial nodes and one angular node.
b) $\psi_{2 s}(r)$ has one radial node and no angular nodes.
c) $\psi_{3 d_{x u}}(r, \theta, \phi)$ has no radial nodes and 2 angular nodes.
d) $\psi_{3 d_{x^{2}-y^{2}}}(r, \theta, \phi)$ has no radial nodes and 2 angular nodes.

9.11

$\langle r\rangle=\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{\infty} r^{3} e^{-\frac{2 r}{a_{0}}} d r$
$\langle r\rangle=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-\frac{2 r}{a_{0}}} d r$
Using the standard integral $\int_{0}^{\infty} r^{n} e^{-\alpha r}=\frac{n!}{\alpha^{n+1}}$
$\langle r\rangle=\frac{4}{a_{0}^{3}} \frac{6 a_{0}^{4}}{16}=\frac{3}{2} a_{0}$

9.18

$\left\langle E_{\text {kneatic }}\right\rangle=\int \psi^{*}(\tau) \hat{E}_{\text {kneete }} \psi(\tau) d \tau$
$\left\langle E_{\text {knentic }}\right\rangle=-\frac{\hbar^{2}}{2 m_{e}} \frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{\infty} e^{-r / \sigma_{0}}\left(\frac{1}{r^{2}} \frac{d}{d r}\left[r^{2} \frac{d}{d r} e^{-r / a_{0}}\right]\right) r^{2} d r$
$\left\langle E_{\text {berefic }}\right\rangle=-\frac{\hbar^{2}}{2 m_{e}} \frac{4}{a_{0}^{3}} \int_{0}^{\infty}\left[-\frac{2 r}{a_{0}} e^{-2 r / a_{0}}+\frac{r^{2}}{a_{0}^{2}}-e^{-2 r / r_{0}}\right] d r=\frac{\hbar^{2}}{m_{0}} \frac{4}{a_{0}^{4}} \int_{0}^{\infty} r e^{-2 r / r_{0}} d r-\frac{\hbar^{2}}{m_{e}} \frac{2}{a_{0}^{5}} \int_{0}^{\infty} r^{2} e^{-2 r r_{0}} d r$
Using the standard integral $\int_{0}^{\infty} r^{n} e^{-\alpha r}=\frac{n!}{\alpha^{n+1}}$
$\left\langle E_{\text {kinetic }}\right\rangle=\frac{\hbar^{2}}{m_{e}} \frac{4}{a_{0}^{4}} \frac{a_{0}^{2}}{4}-\frac{\hbar^{2}}{m_{e}} \frac{2}{a_{0}^{5}} \frac{2 a_{0}^{3}}{8}=\frac{\hbar^{2}}{2 m_{e} a_{0}^{2}}=\frac{\hbar^{2} \pi m_{e} e^{2}}{2 m_{e} a_{0} \varepsilon_{0} h^{2}}=\frac{e^{2}}{8 \pi a_{0} \varepsilon_{0}}$

$$
\begin{aligned}
& \left\langle E_{\text {potential }}\right\rangle=\int \psi^{*}(\tau) \hat{E}_{\text {potential }} \psi(\tau) d \tau \\
& \left\langle E_{\text {potential }}\right\rangle=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{\infty}\left[e^{-r / a_{0}}\right]\left(\frac{1}{r}\right)\left[e^{-r / a_{0}}\right] r^{2} d r \\
& \left\langle E_{\text {potential }}\right\rangle=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{4}{a_{0}^{3}} \int_{0}^{\infty} r e^{-2 r / a_{0}} d r=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{4}{a_{0}^{3}} \frac{a_{0}^{2}}{4}=-\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}
\end{aligned}
$$

9.24

$$
\begin{aligned}
& \langle r\rangle_{n l}=\frac{n^{2} a_{0}}{Z}\left[1+\frac{1}{2}\left(1-\frac{l(l+1)}{n^{2}}\right)\right] \\
& n=\sqrt{\frac{2 Z \times\langle r\rangle_{n 0}}{3 a_{0}}}=\sqrt{\frac{2000 a_{0}}{3 a_{0}}}=25.82 \approx 26
\end{aligned}
$$

$$
I=\frac{Z^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}=\frac{\frac{Z^{2}}{n^{2}} \times\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{8 \pi \times 8.854 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \times 5.292 \times 10^{-11} \mathrm{~m}} \times \frac{1 \mathrm{eV}}{1.602 \times 10^{-19} \mathrm{~J}}
$$

$$
I=13.6039 \frac{Z^{2}}{n^{2}} \mathrm{eV}=13.6039 \frac{1}{n^{2}} \mathrm{eV} \text { for the } \mathrm{H} \text { atom. }
$$

For the ground state, $I=13.6039 \mathrm{eV}$ and for $n=26, I=0.0201 \mathrm{eV}$.

