Chapter 6 – Commutators

The values of two different observables, *a* and *b*, can be simultaneously determined (precisely) only if the measurement does not change the state of the system.

 $a \leftrightarrow \hat{A}$ $b \leftrightarrow \hat{R}$ $\hat{B}\hat{A}\psi_n(x) = \hat{B}\alpha_n\psi_n(x)$, if ψ_n an e.f. of \hat{A} $(A\psi_n = \alpha_n\psi_n)$ $=\beta_n \alpha_n \psi_n$, if ψ_n also an e.f. of \hat{B} ($B\psi_n = \beta_n \psi_n$) Note that for this case $\hat{B}\hat{A}\psi_n = \hat{A}\hat{B}\psi_n$ $(\hat{A}\hat{B} - \hat{B}\hat{A})f = [A, B]f$ commutator

 $[A,B] = 0 \Rightarrow A$ and B commute: the corresponding observables can be determined exactly, simultaneously

 $p_{\rm x}$, x cannot be known exactly

 p_x , H cannot be known exactly if V \neq constant)

Stern-Gerlach experiment

Beam of Ag atoms split by inhomogeneous magnetic field

Expt. \rightarrow only 2 values of spin possible in the z direction \rightarrow eigenfunctions α (up spin), β (down spin)

Now, take beam of the downward deflected atoms and pass through magnetic field in z direction

The beam is split in two (α , β) components $\Rightarrow \hat{A}$ and \hat{B} do not commute

 μ_z and μ_x cannot be simultaneously well defined

Stern-Gerlach expt. (1921) was carried out to confirm the Bohr model

Electron spin was discovered several years later.

Uncertainty principle (Heisenberg)

 $\sigma_{\rho}\sigma_{x} \geq \frac{\hbar}{2}$

$$\Delta p \cdot \Delta x \ge \frac{\hbar}{2}$$
 \neq 0 because \hat{p}_x and \hat{x} do not commute

standard deviations

$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 \qquad \qquad \sigma_p^2 = \langle p^2 \rangle - \langle p \rangle^2$$

$$\sigma_{x} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \langle x \rangle)^{2}} = \sqrt{\langle x^{2} \rangle - \langle x \rangle^{2}}$$

spread in x

particle-in-box example

$$\langle x \rangle = \frac{a}{2}$$
$$\langle x^2 \rangle = a^2 \left(\frac{1}{3} - \frac{1}{2\pi^2 n^2} \right)$$
$$\langle p \rangle = 0$$
$$\langle p^2 \rangle = \frac{n^2 \pi^2 \hbar}{a^2}$$
$$\sigma_p = \frac{n \pi \hbar}{a}$$
$$\sigma_x = a \sqrt{\left(\frac{1}{12} - \frac{1}{2\pi^2 n^2} \right)}$$
$$\sigma_p \sigma_x = 0.57 \hbar > \frac{\hbar}{2} \text{ for } n = 1$$

$$\psi = a\psi_{left} + b\psi_{right}$$
 (| a |² + | b |² = 1, assume $a = b$)

Implications of looking into left-hand box

Entanglement, Teleportation, and Quantum Computers

 $\psi = a\psi_{left} + b\psi_{right}$: superposition of a single particle

If we look in box and find particle there a^2 goes from $\frac{1}{2}$ to 1 and b^2 drops from $\frac{1}{2}$ to 0

- \bullet photons exit crystal with $1\!\!\!/_2$ original frequency
- one photon in → two photons out polarization can be horizontal (H) or vertical (V)

whatever polarization is measure for one photon, the opposite is found for the other

entanglement $\psi = -$

$$\psi = \frac{1}{\sqrt{2}} \left(\psi_1(H) \psi_2(V) + \psi_1(V) \psi_2(H) \right)$$

Action at a distance

implications for teleportation and quantum computing