## Chapter 6 - Commutators

The values of two different observables, $a$ and $b$, can be simultaneously determined (precisely) only if the measurement does not change the state of the system.

$$
\begin{array}{rlrl}
a \leftrightarrow \hat{A} & b \leftrightarrow \hat{B} \\
\hat{B} \hat{A} \psi_{n}(x)=\hat{B} \alpha_{n} \psi_{b}(x), & \text { if } \psi_{n} \text { an e.f. of } \hat{A} & \left(A \psi_{n}=\alpha_{n} \psi_{n}\right) \\
& =\beta_{n} \alpha_{n} \psi_{n}, & \text { if } \psi_{n} \text { also an e.f. of } \hat{B} & \left(B \psi_{n}=\beta_{n} \psi_{n}\right)
\end{array}
$$

Note that for this case $\hat{B} \hat{A} \psi_{n}=\hat{A} \hat{B} \psi_{n}$
$(\hat{A} \hat{B}-\hat{B} \hat{A}) f=[\underbrace{A, B]} f$
commutator
$[A, B]=0 \Rightarrow A$ and $B$ commute: the corresponding observables can be determined exactly, simultaneously
$p_{x}$, x cannot be known exactly
$p_{x}$, H cannot be known exactly if $V \neq$ constant)

Stern-Gerlach experiment


Ag atoms - unpaired $e^{-}$has spin
$\rightarrow$ magnetic moment in $z$ direction
$\rightarrow$ deflected by external magnetic field
Expt. $\rightarrow$ only 2 values of spin possible in the $z$ direction $\rightarrow$ eigenfunctions $\alpha$ (up spin), $\beta$ (down spin)

Initial wave function $\psi=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} \beta\right), \quad\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$

run downward deflected atoms through an inhomogeneous mag. field in $x$ direction

(measures z component)

operator $\hat{B} \quad\left(=\hat{S}_{x}\right)$
(measures $x$ components)

Now, take beam of the downward deflected atoms and pass through magnetic field in z direction

The beam is split in two $(\alpha, \beta)$ components
$\Rightarrow \hat{A}$ and $\hat{B}$ do not commute
$\mu_{\mathrm{z}}$ and $\mu_{\mathrm{x}}$ cannot be simultaneously well defined

Stern-Gerlach expt. (1921) was carried out to confirm the Bohr model Electron spin was discovered several years later.

## Uncertainty principle (Heisenberg)

$$
\begin{aligned}
& \Delta p \cdot \Delta x \geq \frac{\hbar}{2} \quad \neq 0 \text { because } \hat{p}_{x} \text { and } \hat{x} \text { do not commute } \\
& \sigma_{\rho} \sigma_{x} \geq \frac{\hbar}{2}
\end{aligned}
$$

standard deviations

$$
\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} \quad \sigma_{p}^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}
$$

$$
\sigma_{x}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
$$

spread in x
particle-in-box example

$$
\begin{aligned}
& \langle x\rangle=\frac{a}{2} \\
& \left\langle x^{2}\right\rangle=a^{2}\left(\frac{1}{3}-\frac{1}{2 \pi^{2} n^{2}}\right) \\
& \langle p\rangle=0 \\
& \left\langle p^{2}\right\rangle=\frac{n^{2} \pi^{2} \hbar}{a^{2}} \\
& \sigma_{p}=\frac{n \pi \hbar}{a} \\
& \sigma_{x}=a \sqrt{\left(\frac{1}{12}-\frac{1}{2 \pi^{2} n^{2}}\right)} \\
& \sigma_{p} \sigma_{x}=0.57 \hbar>\frac{\hbar}{2} \text { for } n=1
\end{aligned}
$$

Supplemental material:

$\psi=a \psi_{\text {left }}+b \psi_{\text {right }} \quad\left(|a|^{2}+|b|^{2}=1, \quad\right.$ assume $\left.a=b\right)$

Implications of looking into left-hand box

## Entanglement, Teleportation, and Quantum Computers

$\psi=a \psi_{\text {left }}+b \psi_{\text {right }}:$ superposition of a single particle


- photons exit crystal with $1 / 2$ original frequency
- one photon in $\rightarrow$ two photons out polarization can be horizontal (H) or vertical (V)
whatever polarization is measure for one photon, the opposite is found for the other
entanglement $\quad \psi=\frac{1}{\sqrt{2}}\left(\psi_{1}(H) \psi_{2}(V)+\psi_{1}(V) \psi_{2}(H)\right)$
Action at a distance
implications for teleportation and quantum computing

