Chapter 4

Free particle: $\quad \frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi$

$$
\psi_{+}=A_{+} e^{i k x}
$$

traveling wave

$$
\longrightarrow k=\sqrt{2 m E / \hbar^{2}}
$$

$\psi_{-}=A_{-} e^{-i k x}$
traveling wave

Note: x can take on any value, but p_{x} is either
$\hbar k$ or $-\hbar k$ (consistent with uncertainty principle)

$$
p(x) d x=\frac{\psi^{*} \psi}{\int_{-L}^{L} \psi^{*} \psi d x}=\frac{d x}{2 L} \text { independent of } x .
$$

Equal probability of finding the particle anywhere

Particle the 1-D box

particle cannot escape from the box Inside the box $\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi=E \psi$

Wavefunction inside box is of the form:
$\psi(x)=A \sin k x+B \cos k x$
$\psi(0)=0=A \sin k x+B \cos k x \Rightarrow B=0$
$\psi(x)=A \sin k x$
$\psi(a)=0=A \sin k a \Rightarrow k a=n \pi, \quad n=1,2,3, \ldots$

$$
k=\frac{n \pi}{a}
$$

$\psi_{n}(x)=A \sin \frac{n \pi x}{a}=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}$ \qquad

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin \left(\frac{n \pi x}{a}\right)=E \sin \left(\frac{n \pi x}{a}\right) \\
& \frac{-\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{a^{2}}(-1)=E \\
& E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}}=\frac{n^{2} h^{2}}{8 m a^{2}}, \quad n=1,2,3 \ldots
\end{aligned}
$$

minimum energy $=\frac{h^{2}}{8 m a^{2}}=$ zero-point energy
Consistent with the uncertainty principle.

Because x is constrained to be between 0 and a, the momentum cannot be zero. $\Rightarrow E \neq 0$.

$$
\begin{aligned}
& \langle x\rangle=\frac{a}{2} \text { for all } n . \\
& <p_{x}>=0 \text { for all } n .
\end{aligned}
$$

Energies get closer together as

$$
\begin{aligned}
& \mathrm{m} \rightarrow \infty \\
& \mathrm{a} \rightarrow \infty \\
& \frac{E_{n+1}-E_{n}}{E_{n}}=\frac{2 n+1}{n^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

spectrum becomes continuous at large n

Excitation energy

$$
\Delta E=E_{n+1}-E_{n}=\frac{h^{2}}{8 m a^{2}}(2 n+1)
$$

Can use as a crude model for understanding the electronic spectra of polyenes.

