Chapter 3 – Postulates

1. State of QM system completely specified by wavefunction $\Psi(x,t)$

$$P(x_0, t_0) = \Psi(x_0, t_0) * \Psi(x_0, t_0) dx = |\Psi(x_0, t_0)|^2 dx$$

probability of finding the particle within dx of x_0 at time t_0

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1 \quad \longleftarrow \quad \text{probability of finding}$$

the particle somewhere

⇒
$$\Psi$$
 is single valued
 Ψ and $\frac{d\Psi}{dx}$ are continuous
 Ψ cannot be ∞ over a finite interval

2. Each observable is associated with a QM operator

position:
$$\hat{x} = x$$
momentum: $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$ KE: $\hat{p} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} = \frac{\hat{p}^2}{2m}$ PE: $\hat{E}_{pot} = V(x)$ total E: $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$ angular
momentum: $\hat{l}_x = \frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$

. . . .

- 3. In a <u>single</u> measurement of an observable associated with Â, only an eigenvalue of can be measured.
- 4. Expectation value:

$$< a >= \frac{\int_{-\infty}^{\infty} \Psi^* \widehat{A} \Psi dx}{\int_{-\infty}^{\infty} \Psi^* \Psi dx}$$

Average of the observable a, if many measurements are done

If Ψ is an eigenfunction of \hat{A} , all measurements give the same result

If Ψ is <u>not</u> an eigenfunction of \hat{A}

$$\begin{split} \Psi &= \sum b_n \phi_n(x,t) \\ \uparrow & \quad \\ eigenfunctions of \hat{A} \\ &< a >= \sum \left| b_m \right|^2 a_m \ , \quad \text{assuming } \Psi \text{ is normalized} \end{split}$$

Suppose
$$\psi(x) = \frac{1}{2}\phi_1(x) + \frac{\sqrt{3}}{2}\phi_2(x)$$
, ϕ_1 , ϕ_2 being eigenfunctions of Â

$$\hat{A}\phi_1 = a_1\phi_1, \quad \hat{A}\phi_2 = a_2\phi_2$$

How frequently do we measure a_1 ? a_2 ?

5. The time evolution of a QM system is given by

$$i\hbar \frac{\partial \Psi}{\partial t}(x,t) = \hat{H} \ \Psi(x,t)$$

If Ψ is a solution of the time-independent SE

$$\Psi = \psi(x)e^{-iEt/\hbar}$$