Chapter 15 – Electronic Spectroscopy

Diatomic molecules

ignoring spin-orbit coupling, the good quantum #s are M_L , S, M_S .

$$M_L = \sum_i M_{\ell_i}, \qquad M_S = \sum_i M_{S_i}$$

Term symbols:	$^{2S+1}\Lambda$,	$\Lambda = M_L $
---------------	--------------------	-------------------

Λ	0	1	2	3

symbol Σ Π Δ Φ

g, u subscripts if there is an inversion center

+, - symmetry

 Σ states only depends on whether ψ changes sign upon reflection through a plane through the molecular axis

Selection rules

 $\Delta \Lambda = 0, \pm 1$

 $\Delta S = 0$

$$u \leftrightarrow g \qquad + \rightarrow +; \quad - \rightarrow -$$

If ground + excited states had the same potential energy curves, would get a single line

If excited state potential is displaced, can get a very long progression.

Intensities of vibrational peaks

$$\mu_{fi} = \left\langle \Psi_{f} \left| \hat{\mu} \right| \Psi_{i} \right\rangle, \qquad \hat{\mu} = -e \sum_{i} \vec{r}_{i}$$
$$\approx \left\langle \Psi_{f}^{el} \left| \hat{\mu} \right| \Psi_{i}^{el} \right\rangle \left\langle \phi_{f}^{vib} \left| \phi_{i}^{vib} \right\rangle \right|$$
$$\left| \left\langle \phi_{f}^{vib} \left| \phi_{i}^{vib} \right\rangle \right|^{2} = \text{Frank-Condon Factor}$$

Note: vibrational structure is seen in the electronic transitions of molecules such as H_2 , N_2 , O_2 .

Formaldehyde $H_{H} = 0$ $1s_0^2 1s_c^2 \sigma_{CH}^2 \sigma_{CH}^2 \sigma_{CO}^2 \pi_{CO}^2 n_0^2 \pi_{CO}^{*0}$

using localized orbitals

 $\sigma\!\!,\,\pi$ not really valid symmetries for a nonlinear molecule

Excited states		<u>C-0</u>	
$n \rightarrow \pi^*$	triplet	BO = 3/2	
$n \rightarrow \pi^*$	singlet	BO = 3/2	
$\pi \rightarrow \pi^{*}$	triplet	<i>BO</i> = 1	
$\pi \rightarrow \pi^*$	singlet	BO = 1	

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Radiative Transitions

absorption fluorescence phosphorescence

Non-Radiative Transitions

internal conversion intersystem crossing f collisions usually important Internal conversion is generally fast compared to fluorescence

Distance R

UV Photoelectron Spectroscopy

16.

Removal of an electron from this orbital has little impact on the bonding \rightarrow not a very wide FC envelope

Removal of an *e*⁻ from this orbital will cause a long progression in the bending vibration

Removal of an *e*⁻ from this orbital causes excitation of both stretch and bending vibrations

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings