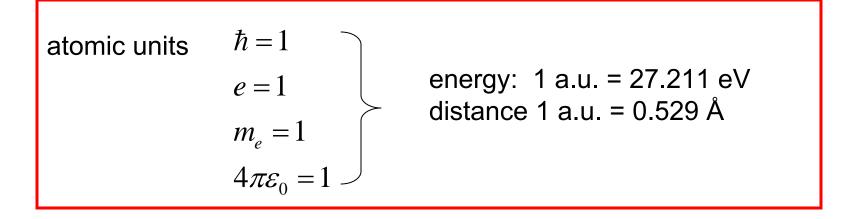
H atom

$$E = -\frac{m_e e^4}{8\varepsilon_0^2 h^2 n^2}, \quad n = 1, 2, 3, ...$$
$$a_0 = \frac{\varepsilon_0 h^2}{\pi m_e e^2} = 0.529 \text{\AA}$$

$$E = -\frac{1}{2} \frac{m_e e^4}{(4\pi\epsilon_0)^2 n^2 \hbar^2}$$
 $\frac{-1}{2n^2}$ in a. u.

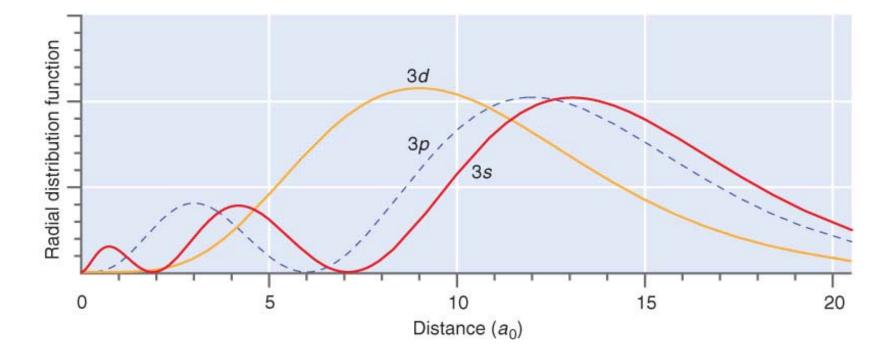


Note: We really should be using μ instead of m_e.

H, D, T have slightly different μ and thus can be distinguished spectroscopically Treatment of H atom applies to He⁺, Li²⁺, ... U⁹¹⁺

Radial distribution function \rightarrow integrate over angular degrees of freedom

 $P(r)dr = r^2 \left[R(r) \right]^2 dr$



Chapter 10 Many e⁻ atoms
He atom:
$$\left(-\frac{1}{2}\nabla_{1}^{2}-\frac{1}{2}\nabla_{2}^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}\right)\psi = E\psi$$
 in a.u.
cannot separate due to $\frac{1}{r_{12}}$ term
However, it is still useful to use an
approximate wavefunction that does separate
 $\psi = \phi_{1}(\vec{r}_{1})\phi_{2}(\vec{r}_{2})$ orbital approximation
Simplest approach: neglect the $\frac{1}{r_{12}}$ term
poor approximation
Better approach: each e⁻ experiences a potential
from the average charge distribution of the other e⁻

$$V_{1}^{eff}(\vec{r}_{1}) = -\frac{2}{r_{1}} + \int \phi_{2}(\vec{r}_{2}) \frac{1}{r_{12}} \phi_{2}(\vec{r}_{2}) d\vec{r}_{2} \qquad \text{Hartree model}$$

N electrons \rightarrow N one-electron hamiltonians \rightarrow { ϕ_l , ε_i }

To proceed further, we must consider e⁻ spin

spin of $e^- = \frac{1}{2}$; two components $m_s = +\frac{1}{2}$, $m_s = -\frac{1}{2}$

spin wavefunctions: $\alpha \quad m_s = \frac{1}{2} \quad \uparrow$ $\beta \quad m_s = -\frac{1}{2} \quad \downarrow$

$$\hat{s}^2 \alpha = \hbar^2(s)(s+1) = \frac{3}{4}\alpha\hbar^2$$

$$\hat{s}^2 \beta = \frac{3}{4} \beta \hbar^2$$

$$\hat{s}_{z}\alpha = m_{s}\hbar\alpha = \frac{\hbar}{2}\alpha; \quad \hat{s}_{z}\beta = -\frac{\hbar}{2}\beta$$
$$\int \alpha^{*}\alpha d\sigma = \int \beta^{*}\beta d\sigma = 1; \quad \int \alpha^{*}\beta d\sigma = 0$$

Indistinguishability of electrons wavefunction must be antisymmetric wrt exchange of two e⁻

He:
$$\psi = \phi_{1s}(1)\phi_{1s}(2)[\alpha(1)\beta(2) - \beta(1)\alpha(2)]$$

 $\vec{r_1} \quad \vec{r_2} \quad \sigma_1 \quad \sigma_2$
Pauli
exclusion
principle

$$\psi = \frac{1}{\sqrt{2}} \begin{vmatrix} 1s(1)\alpha(1) & 1s(1)\beta(1) \\ 1s(2)\alpha(2) & 1s(2)\beta(2) \end{vmatrix} = \frac{1}{\sqrt{2}} 1s(1)1s(2) [\alpha(1)\beta(2) - \beta(1)\alpha(2)] \\ = \frac{1}{\sqrt{2}} 1s1s(\alpha\beta - \beta\alpha)$$

In general
$$\psi(1, 2, ...n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(1)\alpha(1) & \phi_1(1)\beta(1)...\phi_m(1)\beta(1) \\ \phi_1(2)\alpha(2) & \phi_1(2)\beta(2)...\phi_m(2)\beta(2) \\ ... & ... \\ \phi_1(n)\alpha(n) & \phi_1(n)\beta(n)...\phi_m(n)\beta(n) \end{vmatrix}$$

m = n / 2, if n even

$$=\frac{n+1}{2}$$
, if n odd

Slater determinant

Variational method:

approximate wavefunction Φ

$$H\Phi \neq E\Phi$$

 $E = \frac{\int \Phi^* H \Phi d\tau}{\int \Phi^* \Phi d\tau} \quad \text{If } \Phi \text{ has a parameter, b, solve } \partial E / \partial b = 0$ example: $\Phi = \left(\frac{x}{a} - \frac{x^3}{a^3}\right) + \alpha \left(\frac{x^5}{a^5} - \frac{1}{2}\left(\frac{x^7}{a^7} + \frac{x^9}{a^9}\right)\right)$ for particle-in-box problem with 0 < x < a

The variational parameter is α

Plot of the exact and approximate wavefunctions

0.4

0.6

x/a

0.8

0.2

if
$$\alpha = 0 \rightarrow E = 0.203 \frac{h^2}{ma^2}$$

$$\alpha \neq 0 \qquad \frac{2E}{2\alpha} = 0 \Longrightarrow \alpha = -6.345 \rightarrow E = 0.127 \frac{h^2}{ma^2}$$
$$E_{exact} = 0.125 \frac{h^2}{ma^2}$$

The energy can never fall below the exact energy

Hartree-Fock Self-Consistent Field method

 Φ is taken to be a Slater determinant parameters in orbitals are varied

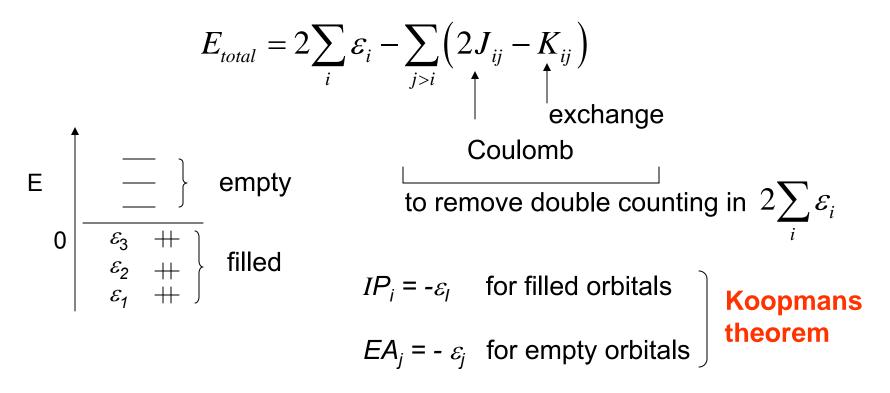
$$\left[-\frac{1}{2}\nabla_i^2 + V_i^{eff}(r_i)\right]\phi_i(r_i) = \varepsilon_i(r_i)$$

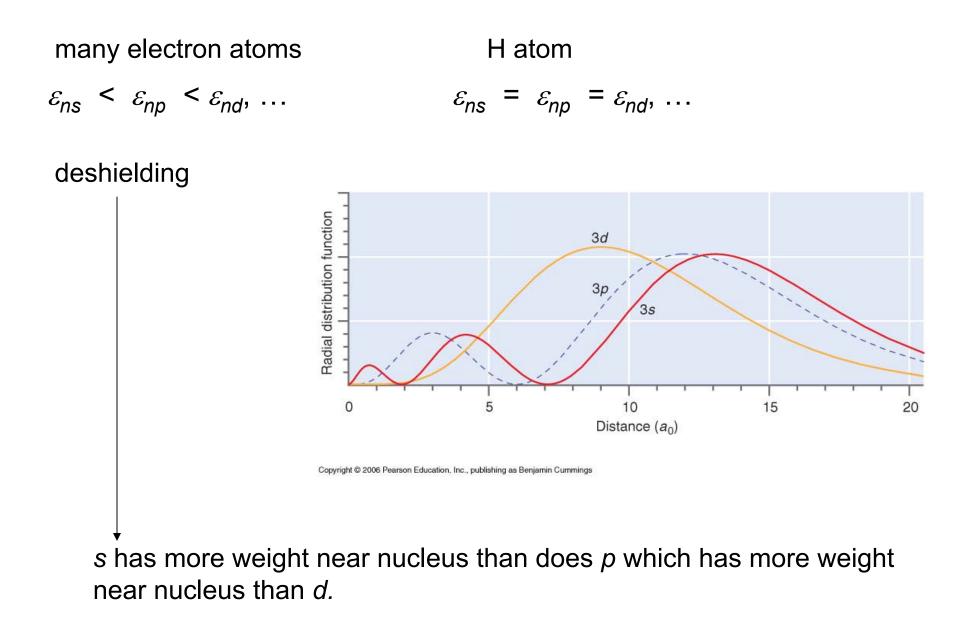
—depends on orbitals that we are trying to solve for

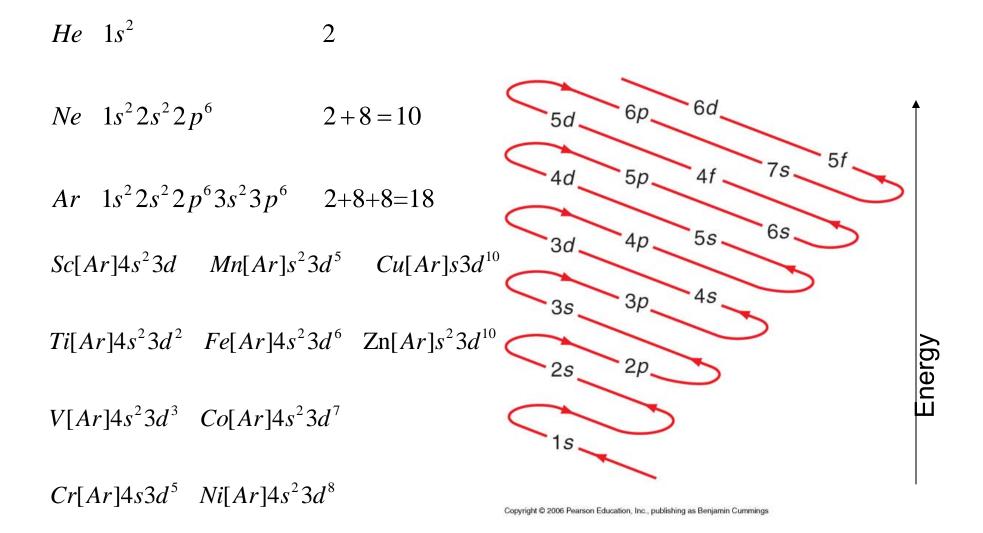
Guess a set of orbitals

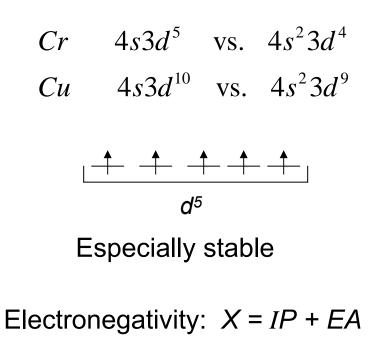
construct $V_i^{e\!f\!f}$ solve for orbitals + energies

Iterate until energies and orbitals are converged.





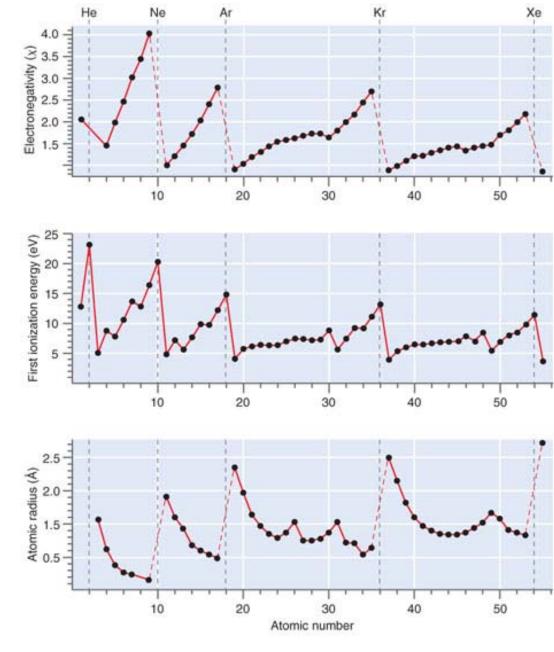




definition due to Mulliken

Does Na transfer an eto CI?

$$\Delta E = IP_{Na} - EA_{Cl} = 5.1 - 3.6 = 1.5eV$$



Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Many electron atoms:

n,
$$\ell$$
, m_{ℓ} , m_{s} not good quantum #s

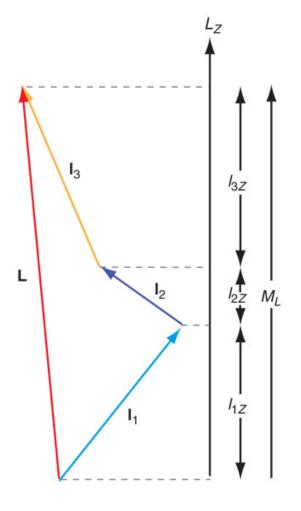
$$L = \sum_{i} \ell_{i}, \quad S = \sum S_{i}$$

$$\hat{L}_{z} = \sum_{i} \tilde{\ell}_{z,i}, \quad \hat{S}_{z} = \sum_{i} \hat{S}_{z,i}$$

L, S, M_L , M_S are the good quantum #s

Actually, for heavy elements, one needs to add a spin-orbit coupling term to \hat{H} .

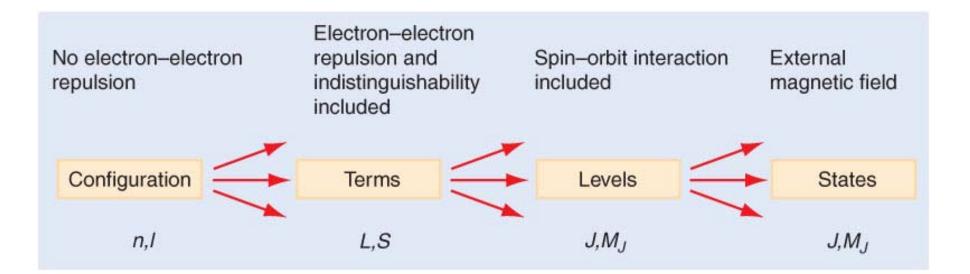
 $\hat{L}^2, \, \hat{L}_z, \, \hat{S}^2, \, \hat{S}_z$ no longer commute with \hat{H}



Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

with spin-orbit coupling, need to use $\vec{J} = \vec{L} + \vec{S}$ $z \ge 40$

the good quantum #s are J, M_J



Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Terms + States

$$H \qquad 1s \qquad \qquad L=0; \ S=\frac{1}{2} \to {}^{2}S$$

$$He \quad 1s^2 \qquad \qquad L=0; \ S=0 \to {}^1S$$

$$B \qquad 1s^2 2s^2 2p \qquad L=1; \ S=\frac{1}{2} \rightarrow {}^2P$$

 $C \qquad 1s^2 2s^2 2p^2 \qquad L = 2, 1, 0; \ S = 1, 0 \rightarrow {}^{3}P, {}^{1}D, {}^{1}S$

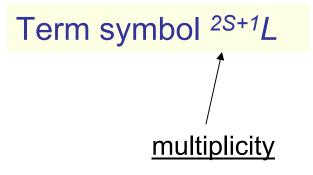
$$N \qquad 1s^{2}2s^{2}2p^{3} \qquad L = 2, 1, 0; \ S = \frac{3}{2}, \frac{1}{2} \rightarrow {}^{4}S, {}^{2}P, {}^{2}D$$

 $O \qquad 1s^2 2s^2 2p^4 \qquad L = 2, 1, 0; \ S = 1, 0 \rightarrow {}^{3}P, {}^{1}D, {}^{1}S$

$$F = 1s^2 2s^2 2p^5 \qquad L = 1; \ S = \frac{1}{2} \rightarrow {}^2P$$

Ne $1s^2 2s^2 2p^6$ $L=0; S=0 \rightarrow {}^1S$

Ti $[Ar]4s^2 3d^2$ $L = 4, 3, 2, 1, 0; S = 0, 1 \rightarrow {}^{1}S, {}^{1}D, {}^{1}G, {}^{3}P, {}^{3}F$



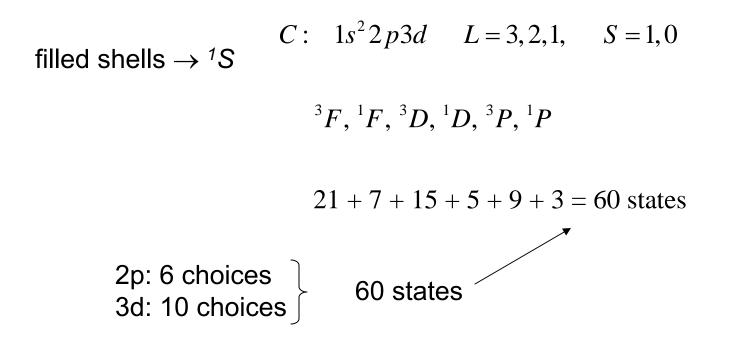
A closer look at spin

1 2 $\begin{cases} \alpha \ \beta \ M_s = 0 \\ \beta \ \alpha \ M_s = 0 \\ \alpha \ \alpha \ M_s = 1 \\ \beta \ \beta \ M_s = 1 \end{cases}$ There must be a S = 1 state. He 1s2s $S = 1 \Rightarrow M_s = -1, 0, 1$ There must also be an S = 0 state $\Rightarrow M_s = 0$ $\psi_T = \frac{1}{\sqrt{2}} (1s2s - 2s1s) \alpha \alpha$

In the absence of a magnetic field, the three triplet components are degenerate.

The *T* and *S* states are different energy $E_T < E_s$

term ${}^{2S+1}L \rightarrow (2S+1)(2L+1)$ degeneracy

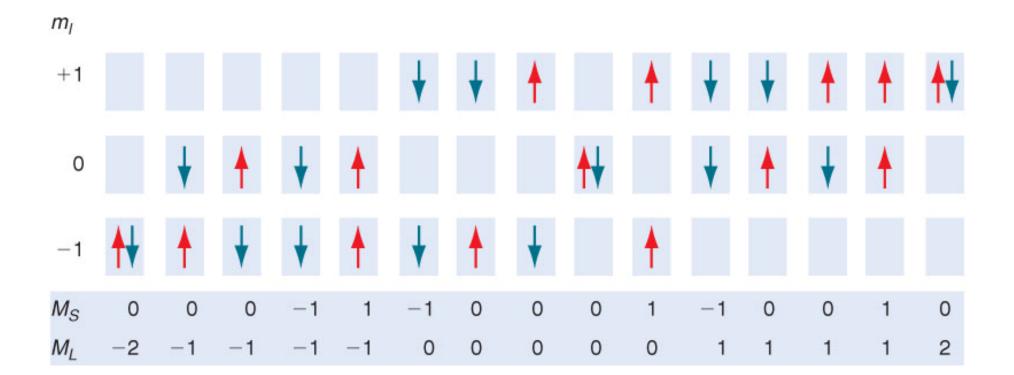


C:
$$1s^{2}2s^{2}2p3p$$
 $L = 2,1,0;$ $S = 1,0$
 $^{3}D, ^{1}D, ^{3}P, ^{1}P, ^{3}S, ^{1}S$
C: $1s^{2}2p^{2} \rightarrow ^{3}P, ^{1}S, ^{1}D$

(what happens to ${}^{3}D, {}^{1}P, {}^{3}S$?) violate the Pauli exclusion principle.

<i>m</i> ₁₁	<i>m</i> ₁₂	$M_L = m_{l1} + m_{l2}$	m _{s1}	<i>m</i> _{s2}	$M_{s} = m_{s1} + m_{s2}$	Term
-1	-1	-2	1/2	-1/2	0	¹ D
			(-1/2)	-1/2	-1	³ P
0	-1	-1	-1/2	1/2	0)	¹ D, ³ P
0	-1	-1	1/2	-1/2	0	D, r
			1/2	1/2	1	³ P
0	0	0	1/2	-1/2	0)	
			$\int -1/2$	1/2	0 }	¹ D, ³ P, ¹ S
1	-1	0) 1/2	-1/2	0)	
1	-1	0	-1/2	-1/2	-1	³ P
			1/2	1/2	1	³ P
			(-1/2)	-1/2	-1	³ P
1	0	1	-1/2	1/2	0)	¹ D, ³ P
1	0	1	1/2	-1/2	0 5	D, T
			1/2	1/2	1	³ P
1	1	2	1/2	-1/2	0	¹ D

States and Terms for the np^2 Configuration



Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Electron Co	onfiguration	Term Symbol		
<i>s</i> ¹	2	S		
p^{1}, p^{5}	2	Р		
p^2, p^4	1	S, ¹ D, ³ P		
p^3	2	P, ² D, ⁴ S		
d^{1}, d^{9}	2	D		
d^2, d^8	1	S, ¹ D, ¹ G, ³ P, ³ F		
d^{3}, d^{7}	4	F, ⁴ P, ² H, ² G, ² F, ² D (2), ² P		
d^4, d^6	5	D, ³ H, ³ G, ³ F (2), ³ D, ³ P (2), ¹ I, ¹ G (2), ¹ F, ¹ D (2),		
		¹ S (2)		
d^5	6	S, ⁴ G, ⁴ F, ⁴ D, ⁴ P, ² I, ² H, ² G (2), ² F (2), ² D (3), ² P, ² S		

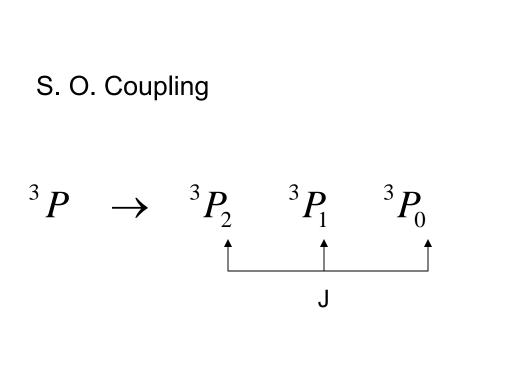
Possible Terms for Indicated Configurations

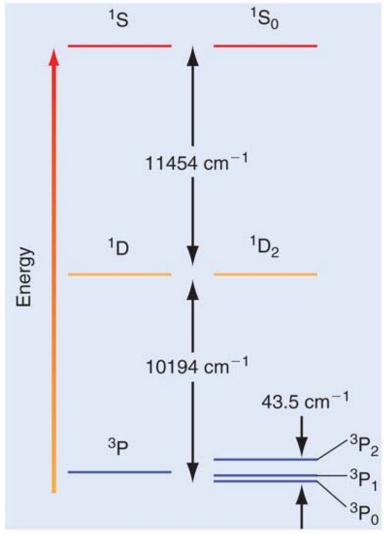
Note $p, p^5; p^2, p^4; d^2, d^8; d^3, d^7$ etc. give the same states for each pair.

Hund's Rules:

- 1. The lowest energy term is that with the highest spin
- 2. For terms that have the same spin, that with the greatest *L* value lies lowest in energy

 $C: 1s^2 2p^2 \qquad {}^{3}P < {}^{1}D < {}^{1}S$

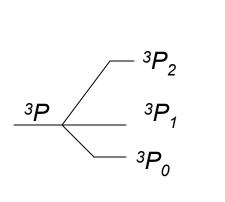




Energy level diagram for C atom

Spin-orbit coupling adds a term $\vec{L} \cdot \vec{S}$ to \vec{H}

generally can ignore for light atoms

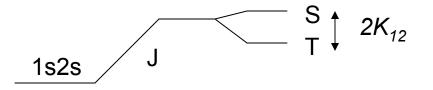


 $3P_2$ Hund's rule 3: If a subshell is \geq half fu $3P_2$ the level with the highest J is lowest in
energy. If it is < half full, the level with
the lowest J is lowest in one-state $3P_1$ the lowest J is lowest in one-state Hund's rule 3: If a subshell is \geq half full,

 ${}^{3}P_{1} \rightarrow$ splits into 3 levels upon application of magnetic field

Return to the 1s2s singlet/triplet problem

$$=E_{1s}+E_{2s}+J_{12}-K_{12},$$



J, *K* are positive

 K_{12} arises from the antisymmetrization of ψ .