Q 12-6

Yes. Since the electrostatic potential is shown as contour map, the bigger apparent size of the atom indicates the higher electron charge around H and being an electron acceptor in the molecule (i.e. in LiH, H is electron acceptor and has oxidized Li ; hence it has a higher electron charge around and looks bigger).

Q 12.8

AO \rightarrow a one electron wave function for an atom
$\mathrm{MO} \rightarrow$ a one electron wave function that is generally expressed as a linear combination of atomic orbitals.
Molecular wave function \rightarrow an N electron wave function that is expressed in terms of molecular orbitals Basis set \rightarrow the set of AOs used to construct the MOs
Minimal basis set \rightarrow the smallest set of AOs for doing a calculation (generally core AOs plus occupied and unoccupied valence AOs)

P 12.8

MO	$\boldsymbol{\sigma}$ or $\boldsymbol{\pi}$	bonding or antibonding	image
3	σ	bonding	f
4	σ	antibonding	b
5	π	bonding	c
6	σ	bonding	a
7	π	bonding	e
8	π	antibonding	d

Since the AO coefficients from N and O are not the same for MO 5 and 7 , their energies are different. These coefficients affect the size of π lobe around each atom.

P 12.14

Probabilities of finding the electron on the H and F atoms:

$$
\begin{aligned}
& p_{H}=\left(c_{11}\right)^{2}+c_{11} c_{21} S_{12}=0.34^{2}+0.34 \times 0.84 \times 0.30=0.201 \\
& p_{F}=\left(c_{11}\right)^{2}+c_{11} c_{21} S_{12}=0.84^{2}+0.34 \times 0.84 \times 0.30=0.791
\end{aligned}
$$

For calculating the dipole moment: (z is the charge on the atom)

$$
\mu=e\left(z_{2}-z_{1}\right) r=1.609 \times 10^{-19} \mathrm{C} \times 91.7 \times 10^{-12} \mathrm{~m} \times|0.791-0.201|=8.71 \times 10^{-30}=2.62 \mathrm{D}
$$

This result is relatively close to the experimental value.

BH 2 has 5 and NH2 has 7 valence electrons. The valence electron HOMO for BH 2 is $2 \mathrm{a}_{1}$ and for NH 2 is $1 b_{1}$. Hence the NH2 molecule adopts a more bent structure to lower the energy and BH2 molecule has the larger bond angle.

P 6

Butadiene has a C_{2} symmetry axis (the Huckel model does not distinguish between cis, trans or linear configurations).

$$
\Psi=c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}+c_{4} p_{4}
$$

And:

$$
\left[\begin{array}{cccc}
\alpha-E & \beta & 0 & 0 \\
\beta & \alpha-E & \beta & 0 \\
0 & \beta & \alpha-E & \beta \\
0 & 0 & \beta & \alpha-E
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=0
$$

From SALCs (symmetry adapted linear combination) of atomic orbitals we can write:

$$
\begin{gathered}
\chi_{1}=\frac{1}{\sqrt{2}}\left(p_{1}+p_{4}\right), \quad \chi_{2}=\frac{1}{\sqrt{2}}\left(p_{2}+p_{3}\right), \quad \chi_{3}=\frac{1}{\sqrt{2}}\left(p_{2}-p_{3}\right), \quad \chi_{4}=\frac{1}{\sqrt{2}}\left(p_{1}-p_{4}\right) \\
\Psi=c_{1} \chi_{1}+c_{2} \chi_{2}+c_{3} \chi_{3}+c_{4} \chi_{4}
\end{gathered}
$$

With respect to C_{2} operation, χ_{1} and χ_{2} are symmetric and χ_{3} and χ_{4} are asymmetric and H_{ij} and S_{ij} vanish if i and j have different symmetry. The block diagonalized matrix then will be:

$$
\left[\begin{array}{cccc}
\alpha-E & \beta & 0 & 0 \\
\beta & \alpha+\beta-E & 0 & 0 \\
0 & 0 & \alpha-\beta-E & \beta \\
0 & 0 & \beta & \alpha-E
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=0
$$

By solving the 2×2 determinants:

$$
\begin{array}{ll}
(\alpha-E)(\alpha+\beta-E)-\beta^{2}=0 \Rightarrow E_{1}=\alpha+1.62 \beta, & E_{3}=\alpha-0.62 \beta \\
(\alpha-E)(\alpha-\beta-E)-\beta^{2}=0 \Rightarrow E_{2}=\alpha+0.62 \beta, & E_{4}=\alpha-1.62 \beta
\end{array}
$$

