8-14

$$
\begin{aligned}
& I=\mu r^{2}=1.73 \times 10^{-26} \times\left(192.6 \times 10^{-12}\right)^{2}=6.4 \times 10^{-46} \mathrm{~kg} / \mathrm{m}^{2} \\
& B=\frac{h}{8 \pi^{2} I c}=0.437 \mathrm{~cm}^{-1} \rightarrow 0.437 \times 3 \times 10^{10}=1.31 \times 10^{10} \mathrm{~s}^{-1}
\end{aligned}
$$

Line spacing $=2 B=2.62 \times 10^{10} s^{-1}$

8-25

$$
\frac{v_{D}}{v_{H}}=\sqrt{\frac{\mu_{C H_{2}-C H_{2}}}{\mu_{C D_{2}-C D_{2}}}}=\sqrt{\frac{\frac{(14.01)^{2}}{28.02} \mathrm{amu}}{\frac{(16.02)^{2}}{32.04} \mathrm{amu}}}=0.935
$$

8-37

$$
T=\frac{\left(2 J_{\max }+1\right)^{2} h^{2}}{4 I k}
$$

First plot

$$
J_{\max }=2 \Rightarrow T=190 \mathrm{~K}
$$

Assuming ± 0.5 uncertainty in $J_{\max }$, and considering the resulting T if $J_{\max }$ was 1 or 3 (adjacent values to $J_{\max }=2$), the uncertainty in T is around $\pm 70 \mathrm{~K}$.

Second plot

$$
J_{\max }=3 \Rightarrow T=372 \mathrm{~K}
$$

Again assuming ± 0.5 uncertainty in $J_{\max }$, and considering the resulting T if $J_{\max }$ was 2 or 4 (adjacent values to $J_{\max }=2$), the uncertainty in T is around $\pm 120 \mathrm{~K}$.

9-2

$$
\begin{gathered}
\frac{d}{d r}\left[r^{2} \frac{d R(r)}{d r}\right]=\frac{d}{d r}\left[\frac{r^{2}}{a_{0}} e^{-\frac{r}{2 a_{0}}}-\frac{r^{3}}{2 a_{0}^{2}} e^{-\frac{r}{2 a_{0}}}\right] \\
=\frac{1}{a_{0}} \frac{d}{d r}\left[r^{2} e^{-\frac{r}{2 a_{0}}}-\frac{r^{3}}{2 a_{0}} e^{-\frac{r}{2 a_{0}}}\right]=\frac{1}{a_{0}}\left[2 r e^{-\frac{r}{2 a_{0}}}-\frac{r^{2}}{2 a_{0}}-\frac{3 r^{2}}{2 a_{0}} e^{\left.-\frac{r}{2 a_{0}}+\frac{r^{3}}{4 a_{0}^{2}} e^{-\frac{r}{2 a_{0}}}\right]}\right. \\
=\frac{1}{a_{0}}\left[2 r e^{-\frac{r}{2 a_{0}}}-\frac{2 r^{2}}{a_{0}} e^{-\frac{r}{2 a_{0}}}+\frac{r^{3}}{4 a_{0}^{2}} e^{-\frac{r}{2 a_{0}}}\right]
\end{gathered}
$$

$$
\begin{gathered}
-\frac{h^{2}}{2 m_{e}}=M, a_{0}=\frac{\varepsilon_{0} h^{2}}{\pi m_{e} \boldsymbol{e}^{2}} \quad \text { (note that } \boldsymbol{e} \text { is charge of an electron) } \\
\frac{M}{r^{2}} \frac{d}{d r}\left[r^{2} \frac{d R(r)}{d r}\right]+\left[\frac{-2 M}{r^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] R(r)=E R(r) \\
\frac{M}{r^{2}} \frac{1}{a_{0}}\left[2 r e^{-\frac{r}{2 a_{0}}}-\frac{2 r^{2}}{a_{0}} e^{-\frac{r}{2 a_{0}}}+\frac{r^{3}}{4 a_{0}^{2}} e^{-\frac{r}{2 a_{0}}}\right]+\left[\frac{-2 M}{r^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right]\left[\frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}}\right]=E\left[\frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}}\right] \\
M\left[\frac{2}{r a_{0}} e^{-\frac{r}{2 a_{0}}}-\frac{2}{a_{0}^{2}} e^{-\frac{r}{2 a_{0}}}+\frac{r}{4 a_{0}^{3}} e^{-\frac{r}{2 a_{0}}}\right]-\frac{2 M}{r a_{0}} e^{-\frac{r}{2 a_{0}}}-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0} a_{0}} e^{-\frac{r}{2 a_{0}}}= \\
-\frac{h^{2}}{2 m_{e}}\left[-\frac{2 \pi m_{e} \boldsymbol{e}^{2}}{a_{0} \varepsilon_{0} h^{2}} e^{-\frac{r}{2 a_{0}}}+\frac{r}{4 a_{0}^{3}} e^{-\frac{r}{2 a_{0}}}\right]-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0} a_{0}} e^{-\frac{r}{2 a_{0}}}= \\
{\left[\frac{\boldsymbol{e}^{2}}{4 \pi a_{0} \varepsilon_{0}} e^{-\frac{r}{2 a_{0}}}-\frac{h^{2}}{2 m_{e}} \frac{r}{4 a_{0}^{3}} e^{-\frac{r}{2 a_{0}}}\right]-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0} a_{0}} e^{-\frac{r}{2 a_{0}}}=-\frac{h^{2}}{2 m_{e}} \frac{1}{4 a_{0}^{2}}\left(\frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}}\right)} \\
E=-\frac{h^{2}}{2 m_{e}} \frac{1}{4 a_{0}^{2}}=\frac{h^{2} \pi m_{e} \boldsymbol{e}^{2}}{8 m_{e} a_{0} \varepsilon_{0} h^{2}}=\frac{h^{2} \pi m_{e} \boldsymbol{e}^{2}}{32 \pi^{2} m_{e} a_{0} \varepsilon_{0} h^{2}}=\frac{\boldsymbol{e}^{2}}{32 \pi^{2} a_{0} \varepsilon_{0}}
\end{gathered}
$$

By comparing this energy to $E_{n}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}, \mathrm{n}=2$.
9-4

$$
\begin{gathered}
\int_{0}^{\infty} r^{n} e^{-\alpha r}=\frac{n!}{\alpha^{n+1}} \\
\langle V\rangle=\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{\infty}-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r} e^{\frac{-2 r}{a_{0}}} r^{2} d r=-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0}} \frac{4 \pi}{\pi a_{0}^{3}} \int_{0}^{\infty} r e^{\frac{-2 r}{a_{0}}} d r=-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0} a_{0}}
\end{gathered}
$$

At ground level,

$$
-\frac{\boldsymbol{e}^{2}}{4 \pi \varepsilon_{0} a_{0}}=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \times 3.14 \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11}}=4.345 \times 10^{-18} \mathrm{~J}
$$

9-15

$$
\begin{gathered}
\psi=R(r) \Theta(\theta) \Phi(\phi) \\
\langle z\rangle=\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \cos \theta \sin \theta d \theta \int_{0}^{\infty} r^{3} e^{\frac{-2 r}{a_{0}}} d r=\frac{2}{a_{0}^{3}}\left[-\cos ^{2} \theta\right]_{0}^{\pi} \int_{0}^{\infty} r^{3} e^{\frac{-2 r}{a_{0}}} d r=0
\end{gathered}
$$

$$
\begin{gathered}
\left\langle z^{2}\right\rangle=\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \int_{0}^{\infty} r^{4} e^{\frac{-2 r}{a_{0}}} d r=\frac{2}{a_{0}^{3}}\left[-\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi} \int_{0}^{\infty} r^{4} e^{\frac{-2 r}{a_{0}}} d r \\
\quad=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{4} e^{\frac{-2 r}{a_{0}}} d r=a_{0}^{2}
\end{gathered}
$$

Since H atom is spherically symmetric, values will be the same for the corresponding x and y quantities.

9-28

$$
\iiint \psi_{210} * \psi_{211}=\iiint[R(r) \Theta(\theta) \Phi(\phi)]_{210}[R(r) \Theta(\theta) \Phi(\phi)]_{211} d \phi d \theta d r
$$

Since the integral over θ is zero $\left(\int_{0}^{\pi} \cos \theta \sin ^{2} \theta d \theta=0\right)$, they are orthogonal.

