4-32

To be an acceptable wave function for particle in the box:
ψ and its partial derivatives must be continuous.
$\int \psi * \psi$ must exists (i.e. ψ must be quadratically inte grable).
$\int \psi * \psi$ is the probability density so it must be single valued.
ψ cannot be infinite over a finite region of space.
ψ must satisfy the boundary conditions $(\psi(0)=\psi(a)=0)$.
a) is not acceptable, since $\psi(0) \neq 0$
b) is not acceptable, since $\psi(a) \neq 0$
c) is acceptable for the part of ψ in the box and can be normalized. ψ outside the box must be zero.
d) is not acceptable, since $\psi(0) \neq 0$ and ψ at $x=0$ is not continuous

5-1

$$
\begin{gathered}
\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{\left(k^{2}+\kappa^{2}\right)^{2}}{4(\kappa k)^{2}} \sinh ^{2} \kappa a} \\
\sinh \kappa a=\frac{e^{\kappa a}-\frac{1}{e^{\kappa a}}}{2} \text { and } \kappa=\sqrt{\frac{2 m}{h^{2}}\left(V_{0}-E\right)} \\
\Rightarrow \sinh \kappa a \approx \frac{e^{\kappa a}}{2} \quad\left(\text { if } \kappa a \gg 1 \text { e.g. when the barrier is very wide or } E \ll V_{0}\right) \\
\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{\left(k^{2}+\kappa^{2}\right)^{2}}{16(\kappa k)^{2}} e^{2 \kappa a}}=\left(1+\frac{\left(k^{2}+\kappa^{2}\right)^{2}}{16(\kappa k)^{2}} e^{2 \kappa a}\right)^{-1} \\
\Rightarrow\left|\frac{F}{A}\right|^{2} \propto e^{-2 \kappa a}
\end{gathered}
$$

5-5

$$
C=C-C=C-C=C-C=C
$$

$$
\text { length of the box }=3 \times 154+4 \times 135=1002 p m
$$

Because there are 8 pi electrons, they occupy the first four energy levels. So exciting one pi electron means going from $4^{\text {th }}$ to $5^{\text {th }}$ level.

$$
E=\frac{n^{2} h^{2}}{8 m a^{2}} \Rightarrow E_{5}-E_{4}=\frac{\left(5^{2}-4^{2}\right) \times h^{2}}{8 \times 9.11 \times 10^{-31} \times\left(1002 \times 10^{-12}\right)^{2}}=1.23 \times 10^{48} \times h^{2}
$$

$$
\lambda=\frac{c}{v}=\frac{c}{\frac{E}{h}}=\frac{2.998 \times 10^{8}}{1.23 \times 10^{48} \times 6.626 \times 10^{-34}}=368 \times 10^{-9} \mathrm{~m}
$$

6-5
a) $\Delta E=\left(\frac{d E}{d p_{x}}\right) \Delta p_{x}=\frac{2 p_{x}}{2 m} \Delta p_{x}=\frac{p_{x}}{m} \Delta p_{x}=\mathrm{v}_{x} \Delta p_{x}$
b) $\Delta E \Delta t=\mathrm{v}_{x} \Delta p_{x} \Delta t=\frac{\Delta x}{\Delta t} \Delta p_{x} \Delta t=\Delta x \Delta p_{x} \Rightarrow \Delta E \Delta t \geq \frac{\hbar}{2}$
c) $\Delta E \Delta t \geq \frac{h}{2} \Rightarrow \Delta E \geq \frac{h}{2 \Delta t}=\frac{h}{4 \pi \Delta t}=h \Delta v$

$$
\begin{gathered}
\Delta v=\frac{1}{4 \pi \Delta t}=\frac{1}{4 \pi\left(1.0 \times 10^{-9}\right)}=8.0 \times 10^{7} \mathrm{~s}^{-1} \\
\Delta v\left(\mathrm{~cm}^{-1}\right)=\frac{\Delta v\left(s^{-1}\right)}{c}=\frac{8.0 \times 10^{7} \mathrm{~s}^{-1}}{2.998 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}}}=0.00265 \mathrm{~cm}^{-1} \\
\Delta v=\frac{1}{4 \pi \Delta t}=\frac{1}{4 \pi\left(1.0 \times 10^{-11}\right)}=8.0 \times 10^{9} \mathrm{~s}^{-1} \\
\Delta v\left(\mathrm{~cm}^{-1}\right)=\frac{\Delta v\left(s^{-1}\right)}{c}=\frac{8.0 \times 10^{9} \mathrm{~s}^{-1}}{2.998 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}}}=0.265 \mathrm{~cm}^{-1}
\end{gathered}
$$

6-7

$$
\begin{aligned}
{\left[x^{2}-\frac{d^{2}}{d x^{2}}, x-\right.} & \left.\frac{d}{d x}\right] f(x)=\left(x^{2}-\frac{d^{2}}{d x^{2}}\right)\left(x-\frac{d}{d x}\right) f(x)-\left(x-\frac{d}{d x}\right)\left(x^{2}-\frac{d^{2}}{d x^{2}}\right) f(x) \\
& =\left(x^{2}-\frac{d^{2}}{d x^{2}}\right)\left(x f(x)-\frac{d f(x)}{d x}\right)-\left(x-\frac{d}{d x}\right)\left(x^{2} f(x)-\frac{d^{2} f(x)}{d x^{2}}\right) \\
& =\left(x^{3} f(x)-x^{2} \frac{d f(x)}{d x}-\frac{d^{2}}{d x^{2}}(x f(x))+\frac{d^{3} f(x)}{d x^{3}}\right) \\
& -\left(x^{3} f(x)-x \frac{d^{2} f(x)}{d x^{2}}-\frac{d}{d x}\left(x^{2} f(x)\right)+\frac{d^{3} f(x)}{d x^{3}}\right) \\
& =-x^{2} \frac{d f(x)}{d x}-\frac{d^{2}}{d x^{2}}(x f(x))+x \frac{d^{2} f(x)}{d x^{2}}+\frac{d}{d x}\left(x^{2} f(x)\right)
\end{aligned}
$$

For clarity, we evaluate the second and forth terms below:

$$
-\frac{d^{2}}{d x^{2}}(x f(x))=-\frac{d}{d x}\left(f(x)+x \frac{d f(x)}{d x}\right)=-\frac{d f(x)}{d x}-\frac{d f(x)}{d x}-x \frac{d^{2} f(x)}{d x}=-2 \frac{d f(x)}{d x}-x \frac{d^{2} f(x)}{d x}
$$

$$
\frac{d}{d x}\left(x^{2} f(x)\right)=2 x f(x)+x^{2} \frac{d f(x)}{d x}
$$

So:

$$
=-x^{2} \frac{d f(x)}{d x}-2 \frac{d f(x)}{d x}-x \frac{d^{2} f(x)}{d x}+x \frac{d^{2} f(x)}{d x^{2}}+2 x f(x)+x^{2} \frac{d f(x)}{d x}=-2 \frac{d f(x)}{d x}+2 x f(x)
$$

