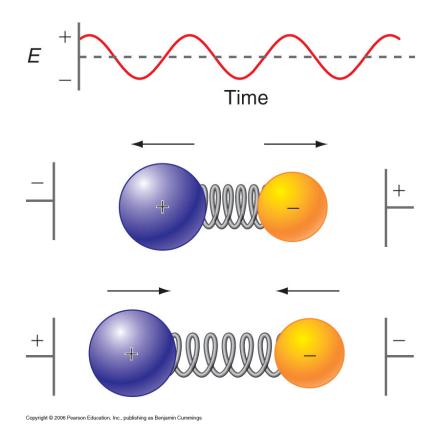
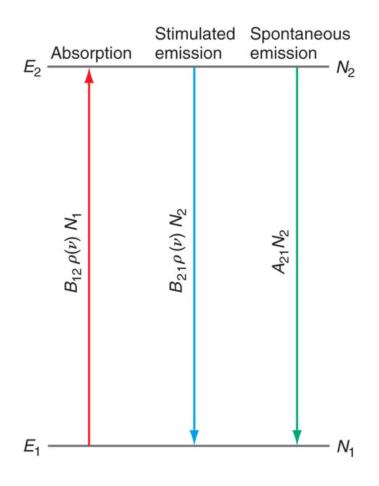

Chapter 8 – Vibrational & Rotational Spectroscopy - Diatomics

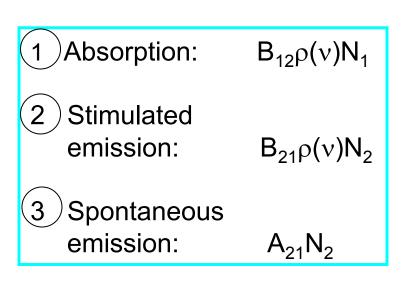
Why are x-rays dangerous? How are γ rays formed?


CLASS	FREQUENCY	WAVELENGTH	ENERGY
Y	300 EHz	1 pm	1.24 MeV
нх —	30 EHz	10 pm	124 keV
	3 EHz	100 pm	12.4 keV
SX —	300 PHz	1 nm	1.24 keV
EUV	30 PHz	10 nm	124 eV
NUV	3 PHz	100 nm	12.4 eV
NIR	300 THz	1µm	1.24 eV
MIR	30 THz	10 µm	124 meV
FIR	3 THz	100 µm	12.4 meV
EHF	300 GHz	1 mm	1.24 meV
SHF	30 GHz	1 cm	124 µeV
UHF	3 GHz	1 dm	12.4 µeV
VHF	300 MHz	1 m	1.24 µeV
HF	30 MHz	10 m	124 neV
MF	3 MHz	100 m	12.4 neV
	300 kHz	1 km	1.24 neV
	30 kHz	10 km	124 peV
VF/ULF	3 kHz	100 km	12.4 peV
SLF	300 Hz	1 Mm	1.24 peV
ELF	30 Hz	10 Mm	124 feV
	3 Hz	100 Mm	12.4 feV

http://en.wikipedia.org/wiki/Electro magnetic_spectrum

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings


electric and magnetic fields \perp to one another and to the propagation direction



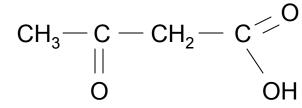
If the frequency of the oscillating field = that of the oscillator, the oscillator is driven into <u>resonance</u>, *i.e.*, vibrates. Note – a dipole is essential for coupling with the field.

For vibrational excitation of a diatomic molecule treated, the key is the dynamic (changing) dipole, *i.e.*, $d\mu/dR$.

For rotational spectroscopy, the key is the static dipole.

 $\rho(v)$ = radiation density $B_{12}\rho(v)N_1 = B_{21}\rho(v)N_2 + A_{21}N_2$ N_1 , $N_2 = #$ of molecules in each level – given by Boltzmann expression

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings


Einstein showed that
$$\begin{vmatrix} B_{12} = B_{21} \\ \frac{A_{21}}{B_{21}} = \frac{16\pi hv^3}{c^3} \end{vmatrix}$$
 using the expression for black-body radiation

stimulated emission: emitted photons have same phase and direction as incident photon (coherent)

lasers are based on stimulated emission

A closer look at vibrational spectroscopy

Useful due to characteristic frequencies (group frequencies)

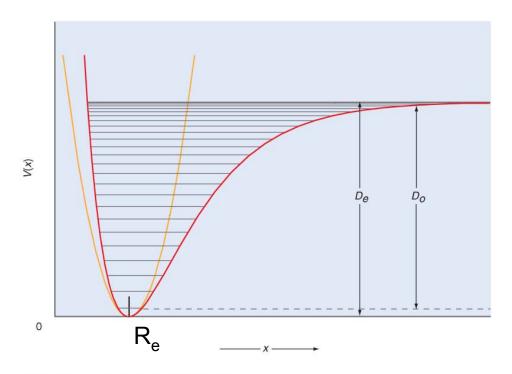
CH, C=O, C-O, O-H all have very different frequencies

In general
$$\frac{N_1}{N_0} \ll 1$$
 for vibrational energy levels

So we can assume that only n = 0 level is populated before photon absorption

Selection rule $\Delta n = \pm 1$

Usually only $n = 0 \rightarrow n = 1$ important


Actually, if the potential is anharmonic, may see weak overtone bands ($\Delta n = 2, 3$)

Morse potential: $V(R) = D_e \left[1 - e^{-\alpha (R - R_e)} \right]^2$

A good model for true potential energy curves

$$E_n = hv\left(n + \frac{1}{2}\right) - \frac{(h\upsilon)^2}{4D_e}\left(n + \frac{1}{2}\right)^2$$

vibrational anharmonicity

What does vibrational anharmonicity due to the bond length?

R_o vs. R_e

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

transition dipole moment

$$\mu_x^{mn} = \left\langle m \mid \mu_x \mid n \right\rangle = \int \psi_m^*(x) \mu_x(x) \psi_n(x) dx$$

$$\mu_{x} = \mu_{ox} + x(t) \left(\frac{d\mu}{dx}\right)_{x=0} + \dots$$
permanent
dipole in x
direction

only second term in expansion of μ_{x} contributes

If starting in the ground state then the relevant integral is

 $\langle 0 | x | 1 \rangle$

Vibrational Selection Rule

 $0 \rightarrow n$

$$\left\langle \psi_{o} \mid \mu_{x} \mid \psi_{n} \right\rangle = \mu_{o} \left\langle \psi_{o} \mid \psi_{n} \right\rangle + \frac{d\mu}{dx} |_{x=0} \cdot \left\langle \psi_{o} \mid x \mid \psi_{n} \right\rangle$$

Need
$$\frac{d\mu}{dx}\Big|_{x=0} \neq 0$$
 and $\left\langle \psi_{o} \mid x \mid \psi_{n} \right\rangle \neq 0$

$$\langle \psi_o | x | \psi_n \rangle = A_o A_n \int_{-\infty}^{\infty} H_o x H_n e^{-\alpha x^2} dx$$

Nonzero only if n = 1

The integral is proportion to the overlap of Ψ_1 with itself

In general, $\Delta n = 1$ selection rule

Absorption: only $\Delta n = 1$ (0 \rightarrow 1) allowed

Emission: only $\Delta n = -1 \ (1 \rightarrow 0), \ (2 \rightarrow 1), \ (3 \rightarrow 2), \ \text{etc.}$ allowed

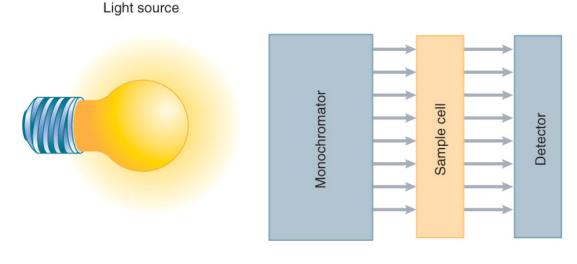
If the potential is harmonic.

 N_2 , H_2 , O_2 : 99.9% of atmosphere

do not absorb IR radiation emitted by earth

so most IR radiation escapes into space

 CO_2 , CH_4 absorb, emit IR radiation


greenhouse gases

Beer's law: $I(\lambda) = I_o(\lambda)e^{-\varepsilon(\lambda)mL}$

m = concentration

- L = path length
- ε = molar absorption coefficient

often have mirrors to reflect light \rightarrow increase path length

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

monochromator – generates light of know wavelength, generally tunable.