Chapter $7-$ Vibrations and	translation
Rotations	rotation
	vibraticle in box
	- harmonic oscillator rotor

$\mid \longleftarrow$ harmonic potential: $V(x)=\frac{1}{2} k x^{2}, k=$ force constant

actually, we generally use the of variable $X^{\prime}=\left(x-x_{e}\right)$ so

$$
\begin{aligned}
& V\left(x^{\prime}\right)=\frac{1}{2} k x^{\prime 2} \\
& x^{\prime}=0 \quad \Rightarrow \quad x=x_{e}
\end{aligned}
$$

Diatomic molecule

center of mass coordinates

$$
\sim_{\mathrm{x}} \bigcirc \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \leftarrow \text { reduced mass }
$$

true potential
can be written
as a Taylor series

$$
\begin{aligned}
& +\left.\frac{1}{2} \frac{d^{2} V}{d x^{2}}\right|_{\mathrm{x}_{\mathrm{e}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{e}}\right)^{2} \\
& +\left.\frac{1}{6} \frac{d^{3} V}{d x^{3}}\right|_{\mathrm{x}_{\mathrm{e}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{e}}\right)^{3}+\ldots
\end{aligned}
$$

for vibration what matters is the separation between the atoms
choose $\mathrm{V}\left(\mathrm{x}_{\mathrm{e}}\right)$ to be the zero of energy

$$
V(x)=\frac{1}{2} \frac{d^{2} V}{d x^{2}}\left(x-x_{e}\right)^{2}+\ldots
$$

$$
=\frac{1}{2} k\left(x-x_{e}\right)^{2}+\ldots
$$

$$
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi
$$

Schrodinger Eq. for 1D harmonic oscillator

Note: $e^{-\frac{1}{2} \alpha x^{2}}$ is a solution

$$
\begin{aligned}
& \frac{d}{d x} e^{-\frac{\alpha}{2} x^{2}}=-\alpha x e^{-\frac{\alpha}{2} x^{2}} \\
& \frac{d}{d x}\left[-\alpha x e^{-\frac{\alpha}{2} x^{2}}\right]=\left(-\alpha+\alpha^{2} x^{2}\right) e^{-\frac{\alpha}{2} x^{2}}
\end{aligned}
$$

Do you see why this solves the equation?

$e^{+\frac{\alpha}{2} x^{2}}$ also solves the differential equation. But we reject it.
Why?

The general form of the wavefuction is

$$
\begin{array}{ll|l}
\psi_{n}=A_{n} H_{n}\left(\alpha^{\frac{1}{2}} x\right) e^{-\frac{\alpha}{2} x^{2}}, & n=0,1,2, \ldots & H_{n}\left(\alpha^{1 / 2} x\right): \\
\alpha=\sqrt{\frac{k \mu}{\hbar^{2}}} & \begin{array}{l}
\text { Hermite } \\
\text { polynomials }
\end{array} \\
\psi_{0}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{\alpha}{2} x^{2}} & \mathrm{~A}_{n}=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{\alpha}{\pi}\right)^{1 / 4} & \begin{array}{l}
\psi_{0}, \psi_{2}, \psi_{4}, \ldots \\
\text { even }
\end{array} \\
\psi_{1}=\left(\frac{4 \alpha^{3}}{\pi}\right)^{1 / 4} x e^{-\frac{\alpha}{2} x^{2}} \\
\psi_{2}=\left(\frac{\alpha}{4 \pi}\right)^{1 / 4}\left(2 \alpha x^{2}-1\right) e^{-\frac{\alpha}{2} x^{2}} & \begin{array}{l}
\psi_{1}, \psi_{3}, \psi_{5}, \ldots \\
\text { even function } \mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x}) \\
\text { odd }
\end{array} \\
\psi_{3}=\left(\frac{\alpha^{3}}{9 \pi}\right)^{1 / 4}\left(2 \alpha x^{3}-3 x\right) e^{-\frac{\alpha}{2} x^{2}} & \begin{array}{l}
\text { odd function } \mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})
\end{array}
\end{array}
$$

$E_{n}=\hbar \sqrt{\frac{k}{\mu}}\left(n+\frac{1}{2}\right)=\hbar \omega\left(n+\frac{1}{2}\right)=h v\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots \quad \omega=\sqrt{\mathrm{k} / \mu}$
quantization due to requiring $\psi \rightarrow 0$ as $\mathrm{x} \rightarrow \pm \infty$

$$
\left\langle E_{K E}\right\rangle=\left\langle E_{P E}\right\rangle=\frac{h v}{2}\left(n+\frac{1}{2}\right)
$$

As n becomes large, there is a high probability of finding the oscillator near the classical turning points

\longleftarrow velocity $\rightarrow 0$
From Engel
Classical situation

short-hand nomenclature

$$
\begin{aligned}
& \langle 0| x|0\rangle=0 \\
& \langle 1| x|1\rangle=0 \\
& \langle 1 \mid 0\rangle=0 \\
& \langle 1| x|0\rangle \neq 0
\end{aligned}
$$

$$
\langle n| \hat{A}|m\rangle=\int \psi_{n}^{*} \hat{A} \psi_{m} d x
$$

The integral $\langle n| x|0\rangle$ is the transition moment for going from state ψ_{0} to ψ_{n}.

Transition probability $\propto|\langle n| x| 0\rangle\left.\right|^{2}$ integral is non zero only if $n=1$

$\Delta \pm$

Later, we will see that it is also essential that the dipole moment is changing.
reduced mass

Chapter 7, continued

Rotation in 2 dimensions

$H_{\text {total }}=H_{\text {trans }}\left(r_{\mathrm{cm}}\right)+\mathrm{H}_{\text {vib }}\left(\tau_{\text {internal }}\right)+\mathrm{H}_{\text {rot }}(\theta, \phi)$
$E_{\text {total }}=E_{\text {trans }}+E_{\text {vib }}+E_{\text {rot }}$
$\psi_{\text {tot }}=\psi_{\text {trans }} \psi_{\text {vib }} \psi_{\text {rot }}$

$V(x, y)=0$ everywhere

$$
-\frac{\hbar^{2}}{2 \mu}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right)_{r=r_{0}}=E \psi
$$

fixed
radius

$$
\frac{1}{\mu}=\frac{1}{m_{1}}=\frac{1}{m_{2}}
$$

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

separation of variables

$$
x_{H}+x_{F}=.9168 \AA
$$

$$
x_{H} m_{H}=x_{F} m_{F}
$$

$$
x_{F}=.0458 \AA
$$

$$
x_{H}=.8710 \AA
$$

Switch to polar coordinates: $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{r}, \phi)$

$$
\begin{gathered}
\frac{-\hbar^{2}}{2 \mu r_{0}^{2}} \frac{d^{2} \Phi}{d \phi^{2}}=E \Phi \longrightarrow \Phi=e^{i m \phi}, \quad m=0, \pm 1, \pm 2, \ldots \\
0 \leq \phi \leq 2 \pi \\
e^{i m(\phi+2 \pi)}=e^{i m \phi} \Rightarrow e^{i m 2 \pi}=1 \\
e^{i m 2 \pi}=\cos 2 \pi m+i \sin 2 \pi m=1 \Rightarrow m=0, \pm 1, \pm 2, \ldots \\
E=\frac{\hbar^{2} m^{2}}{2 \mu r_{0}^{2}}=\frac{\hbar^{2} m^{2}}{2 I} \quad I=\mu r_{0}^{2}=\text { moment of inertia }
\end{gathered}
$$

quantization due to boundary condition $\Phi(0)=\Phi(2 \pi)$
Note: there is no zero-point energy. Why?
Classically

$$
\begin{aligned}
& E=\frac{|\vec{\ell}|^{2}}{2 I}=\frac{1}{2} I \omega^{2} \\
& \vec{\ell}=\text { angular momentum }
\end{aligned}
$$

All energies
possible
angular momentum in z direction: $\vec{\ell}_{2}=\frac{\hbar}{i} \frac{\partial}{\partial \phi}$

$$
\vec{\ell}_{z} \Phi=\frac{\hbar}{i} \frac{1}{\sqrt{2 \pi}} \frac{d}{d \phi} e^{i m \phi}=m \hbar \Phi
$$

$P(\phi) d \phi=\frac{d \phi}{2 \pi}, \quad \begin{aligned} & \text { all } \phi \text { values equally probable } \\ & \text { angular momentum in } \mathrm{z} \text { direction }\end{aligned}$ precisely defined
$\vec{\ell}_{z}, \hat{\phi}$ do not commute

