
Chapter 7 – Vibrations and 
Rotations

translation   – particle in box
rotation        – rigid rotor
vibration      – harmonic oscillator

harmonic potential:                       k = force constant
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true potential 
can be written 
as a Taylor 
series
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center of mass coordinates
for vibration what 
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the atoms



2 2
2

2

1
2 2

d kx E
dx
ψ ψ ψ

μ
− + =

Note:               is a solution
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Do you see why this solves the equation?
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also solves the differential equation.  But we reject it.

Why?

Schrodinger Eq. for 1D 
harmonic oscillator



The general form of the wavefuction is
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Hermite
polynomials

0 2 4, , ,...ψ ψ ψ even

1 3 5, , ,...ψ ψ ψ odd

even function f(-x) = f(x)
odd function f(-x) = f(x)



1 1 1 ,    0,1, 2,...
2 2 2n

kE n n h n nω υ
μ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

quantization due to requiring ψ→ 0 as x → +∞
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velocity → 0

maximum velocity

As n becomes large, there is
a high probability of finding
the oscillator near the classical
turning points

Classical 
situation

ω = √k/μ

From Engel
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The integral               is the
transition moment for going from
state ψ0 to ψn.

Transition probability

0n x

2
| | 0n x∝

integral is non zero only if n = 1

Later, we will see that it is also
essential that the dipole moment
is changing.

short-hand nomenclature

Δ±



Chapter 7, continued

Rotation in 2 dimensions

Htotal = Htrans(rcm) + Hvib(τinternal) + Hrot(θ, φ)

Etotal = Etrans + Evib + Erot

ψtot = ψtrans ψvib ψrot

separation of variables

H                • F19

.9168

.0458

.8710

H F

H H F F

F

H

x x

x m x m

x

x

+ =

=

=

=

Å

Å

Å

xF

xH• •
m1               m2

V(x,y) = 0 everywhere

0

2 2 2

2 22 r r

E
x y
ψ ψ ψ

μ
=

⎛ ⎞∂ ∂
− + =⎜ ⎟∂ ∂⎝ ⎠

fixed 
radius

reduced mass

1 2

1 2

1 2

1 1 1
m m
m m

m m

μ

μ

= =

=
+

c.o.m
≡ • •

μ
c.o.m.



Switch to polar coordinates:     (x, y)   → (r, φ)
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quantization due to boundary condition

Note:  there is no zero-point energy.  Why?

Classically

(0) (2 )πΦ = Φ

2

21
2 2

E I
I

ω= =

= angular momentum
All energies
possible

angular momentum in z direction: z i φ
∂

=
∂

1
2

( ) ,
2

im
z

d e m
i d

dP d

φ

φπ

φφ φ
π

Φ = = Φ
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angular momentum in z direction

precisely defined
ˆ,  z φ do not commute


