Chapter 6 — Commutators

The values of two different observables, a and b, can be simultaneously
determined (precisely) only if the measurement does not change the state
of the system.
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[A,B] =0 = A and B commute: the corresponding observables can be
determined exactly, simultaneously

p,, X cannot be known exactly

p,, H cannot be known exactly if V depends on x)

Consider the particle in the box problem
Does V depend on x?

If one measures the energy and gets h?/8ma?, the system is in
the ground eigenstate of H.

What if you now measure the momentum what do you get?
What is the average momentum?

What happens if you measure the momentum and then measure
the energy?




Stern-Gerlach experiment

Beam of Ag atoms moving in y direction, in an
inhomogeneous magnetic field in the z direction
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Ag atoms have an unpaired electron, which means that Ag atoms have
magnetic moments (will consider this later).

Classically expect there to be a continuous distribution of Ag atoms along the
z-direction, as we would expect the z component of the magnetic moment to
be able to assume any value between the two extremes.



Ag atoms - unpaired e has spin
— magnetic moment in z direction
— deflected by external magnetic field

Expt. — only 2 values of spin possible in the z direction
— eigenfunctions o (up spin), B (down spin)

Initial wave function 1 = (c,a +¢,53), ‘Cl‘z + ‘CZ‘Z -1

I S ' } ) again splits
z > in two (but now along
N 4 ; the x direction)

run downward deflected
atoms through an inhomogeneous
mag. field in x direction

| | | |
operator A (=S,) operator B (=S,)

(measures z component) (measures x component)



Now, take beam of the downward deflected atoms and pass through
magnetic field in z direction

The beam is split in two (o, ) components

— A and B do not commute

l.e., u, and p, cannot be simultaneously well defined

Stern-Gerlach expt. (1921) was carried out to confirm the Bohr model
They actually thought it confirmed the Bohr model.
Electron spin was discovered several years later.

See: http://lorentz.leidenuniv.nl/history/spin/goudsmit.html




Uncertainty principle (Heisenberg)

ApsAX ZE # 0 because P, and X do not commute

spread in X



particle-in-box example
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Supplemental material:

In one
N . measurement
either get
(Put particle in box) (Add dividers) T Wieft OF Wright

Open this box.
Is the particle
present?

(= apply position operator)

l// — a‘l/jleft + bQ”right (l a |2 + | b |2: 11 assume a = b)

Implications of looking into left-hand box

If we find particle there, then a=1, and b =0. The right-hand box
instantaneously "knows" what happened in the left-hand box, no
matter how far away it is. (Action at a distance)



A system with no net magnetic moment decays
to particles with magnetic moments (m,) +1/2

If one particle is +1/2, the other must be -1/2
since net moment is ¢

o Vo1
Two possibilities: | ,0r o particle label

So N+ iT)

_1(
V7

Neither particle has well defined magnetic moment
value until a measurement is made.



Two entangled photons sent through two optical fibers 10 km apart.

If one is sent through a slit causing diffraction, the second
photon displays a diffraction pattern even though it was not
sent through a slit.

Coincidence counts
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Can information be transmitted over a distance for a quantum system?

Suppose W:me¢m
L

eigenfunctions of some operator

2
measurements give ‘bm‘ values sign information lost
can even be more
complicated, e.g.,

4 :%(¢1+i¢2)

phase information is lost
so cannot copy system

In 2000, experiments were done in which a atom at one position was
recreated at another position.



Bob receives photon B and o “‘;H @ X

. . |To: Bob e I_f'
Alice receives photon A. A =
/ Use number 31 et
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. ' /
entanglement is preserved. T
. e ,.f;
Now later, Alice wants to send photon X to Bob. NG
. . L
She cannot measure polarization of X, as \ Bl Entangled
. = particl
that would change X’s wavefunction. XQ@ sy

She entangles X and A.

Whatever state Xis in, A is in the other (orthogonal state)
(If X is vertical pol., A is horizontal and visa versa)
Whatever state A has, B is in orthogonal state.

If BL. Aand A L X, Band X must be in the same state

B acquires polarization of X.



Alice had to entangle A and X, so properties of X changed at
her location and transferred to Bob’s location.

At Bob's location B acquires the polarization that Alice's X
originally had

Photon has been teleported but not copied.

Neither Bob nor Alice knows state of X.

The actual situation is actually more complicated than described above

Alice’s entanglement of A + X has four outcomes. She can measure after
the entanglement which one she has.

Bob has four possible outcomes.

Alice must tell Bob which entanglement she has, so
Bob can know how to rotate B to make identical to X.

Because of this, the limit is the speed of light.

Recently, the experiment has been carried out with entangled atoms.



Quantum computing
classical computer — info stored in bits (0, 1)

n bits > 2" states

guantum computers: gubits — simultaneously a combination of
Oand 1

3 bits > 8 #'s

By preparing entangled states can store more than one number
simultaneously.

Thus doing operations with entangled qubits can allow huge numbers
of calculations to be done in parallel



