Chapter 4

Free particle: $\quad \frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi$

$$
\psi_{+}=A_{+} e^{i k x}
$$

traveling wave

$$
\longrightarrow k=\sqrt{2 m E / \hbar^{2}}
$$

$\psi_{-}=A_{-} e^{-i k x}$
traveling wave

Note: x can take on any value, but p_{x} is either
$\hbar k$ or $-\hbar k$ (consistent with uncertainty principle)

$$
P(x) d x=\frac{\psi^{*} \psi d x}{\int_{-L}^{L} \psi^{*} \psi d x}=\frac{d x}{2 L} \text { independent of } x .
$$

Equal probability of finding the particle anywhere

Particle the 1-D box

particle cannot escape from the box Inside the box $\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi=E \psi$

Wavefunction inside box is of the form:
$\psi(x)=A \sin k x+B \cos k x$
$\psi(0)=0=A \sin 0+B \cos 0 \Rightarrow B=0$
$\psi(x)=A \sin k x$
$\psi(a)=0=A \sin k a \Rightarrow k a=n \pi, \quad n=1,2,3, \ldots$

$$
k=\frac{n \pi}{a}
$$

$\psi_{n}(x)=A \sin \frac{n \pi x}{a}=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \longleftarrow$

Apply
Boundary
Conditions
$\psi(0)=\psi(a)=0$

These are also orthogonal functions. How would you show this?

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin \left(\frac{n \pi x}{a}\right)=E \sin \left(\frac{n \pi x}{a}\right) \\
& \frac{-\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{a^{2}}(-1)=E \\
& E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}}=\frac{n^{2} h^{2}}{8 m a^{2}}, \quad n=1,2,3 \ldots
\end{aligned}
$$

minimum energy $=\frac{h^{2}}{8 m a^{2}}=$ zero-point energy
Consistent with the uncertainty principle.

Because x is constrained to be between 0 and a, the momentum cannot be zero. $\Rightarrow E \neq 0$.

$$
\begin{aligned}
& \langle x\rangle=\frac{a}{2} \text { for all } n . \\
& <p_{x}>=0 \text { for all } n .
\end{aligned}
$$

Energies get closer together as

$$
\begin{aligned}
& \mathrm{m} \rightarrow \infty \\
& \mathrm{a} \rightarrow \infty \\
& \frac{E_{n+1}-E_{n}}{E_{n}}=\frac{2 n+1}{n^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

spectrum essentially becomes continuous at large n

Excitation energy

$$
\Delta E=E_{n+1}-E_{n}=\frac{h^{2}}{8 m a^{2}}(2 n+1)
$$

Can use as a crude model for understanding the electronic spectra of polyenes.

Here we are assuming that only the pi electrons are important. Recall that these are perpendicular to the plane of the molecule with each C atom contributing one electron in a p orbital. (See next page)

pi and pi* orbitals of polyenes

Picture from courses-chem.psu.edu/chem210
ethylene: 2π electrons $\Delta E: n=1 \rightarrow n=2$
butadiene: 4π electrons $\Delta \mathrm{E}: \mathrm{n}=2 \rightarrow \mathrm{n}=3$
hexatriene: 6π electrons $\Delta \mathrm{E}: \mathrm{n}=3 \rightarrow \mathrm{n}=4$

$$
\left|\begin{array}{l}
\frac{h^{2}}{8 m L^{2}}=10.3 \mathrm{eV} \\
\frac{h^{2}}{8 m L^{2}}=3.4 \mathrm{eV} \\
\frac{h^{2}}{8 m L^{2}}=2.1 \mathrm{eV}
\end{array}\right| \mathrm{uV}
$$

THE ELECTROMAGNETIC SPECTRUM

Qualitative agreement with expt., but predicts two rapid a fall off in the adsorption energy with increasing chain length.

Retinol (Vitamin A)
The related molecule, retinal, is the key to vision

Its absorption is in the yellow. The key is the series of conjugated double bonds

