Chapter 1

Late 1800's - Several failures of classical (Newtonian) physics discovered

1905-1925 - Development of QM - resolved discrepancies between expt. and classical theory

QM - Essential for understanding many phenomena in Chemistry, Biology, Physics

- photosynthesis + vision (electron excitation)
- vibrations/rotations (excitation of nuclear motion)
- magnetic resonance imaging
- radioactivity
- operation of transistors
- lasers (CD + DVD players)
- van der Waals interactions

Examples where classical Physics inadequate

1. Blackbody Radiation

 heated objects \rightarrow lightClassical theory
(Rayleigh-Jeans (1905)

$$
\begin{aligned}
\rho d v & =\frac{8 \pi v^{2}}{c^{3}} \bar{E}_{\text {osc }} d v \\
& =\frac{8 \pi v^{2}}{c^{3}} k T d v
\end{aligned}
$$

Emits ∞ energy at all T
$\begin{aligned} & \text { Planck: } \\ & (1900)\end{aligned} \rho d v=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{e^{h v / k T}-1} d v$
originally by fitting experiment

Planck's constant: $\quad h=6.626 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~S}$

http://en.wikipedia.org/wiki/Planck's_constant

Planck later showed this is consistent with the energies of the oscillators making up the blackbody object taking on discrete values

$$
E=n h v, \quad n=0,1,2, \ldots
$$

$$
\Rightarrow \overline{\mathrm{E}}=\frac{h v}{e^{h v / k T}-1} \xrightarrow{\mathrm{~T} \rightarrow 0} 0
$$

Taylor series of e^{x} for small x :

$$
e^{x}=1+x+\ldots
$$

Derivation of Planck result

Possible energies: $0, h v, 2 h v, 3 h v$, etc.
Probability of having energy nhv given by
Boltzmann factor

$$
p(n)=\frac{e^{-n h \nu / k T}}{\sum_{n} e^{-n h \nu / k T}}
$$

$$
\bar{E}=\Sigma E_{n} p(n)=\frac{\sum_{n=0}^{\infty} n h v e^{-n h \nu / k T}}{\sum_{n=0}^{\infty} e^{-n h \nu / k T}}
$$

$$
\text { denominator }=1+e^{-h \nu / k T}+e^{-2 h / / k T}+\ldots=1+x+x^{2}+\ldots=\frac{1}{1-x}=\frac{1}{1-e^{h \nu / k T}}
$$

$$
\text { numerator } \underline{h \nu}\left[0+e^{-h \nu / k T}+2 e^{-2 h \nu / k T}+3 e^{-3 h \nu / k T}+\ldots\right]
$$

$$
=h \nu e^{-h \nu / k T}\left[1+2 e^{-h \nu / k T}+3 e^{-2 h \nu / k T}+\ldots\right]=\frac{h \nu e^{-h \nu / k T}}{\left(1-e^{-h \nu / k T}\right)^{2}}
$$

$$
\bar{E}=\frac{h v e^{-h \nu / k T}}{\left(1-e^{-h \nu / k T}\right)}=\frac{h v}{\left(e^{h \nu / k T}-1\right)}
$$ avg. energy of mode of freq. hv

2. Photoelectric effect

expected behavior

- light is a wave, so each e^{-} absorbs small fraction of the energy
- e^{-}emitted at all v, if intensity (I) great enough
- KE of ejected $\mathrm{e}^{-}>$with I

observed
- \#e- emitted \propto I
- e^{-}emitted if $u>v_{0}$ (critical freq.)
- KE > with v, and independent of I

Explained by Einstein in 1905
light has energy ho and acts particle-like, enabling its energy to
be focused on one e^{-}
$\mathrm{E}_{\text {el }}=$ hu $-\phi, \quad \phi=$ work function of metal (~IP)

3. Heat capacity of solids (classical $=3 R$; actual $\rightarrow 0$

 as $T \rightarrow 0$)

Figure from Wikipedia

4. Spectra of atoms + molecules - discrete lines

Figure from Wikipedia

4. Spectra of atoms + molecules - discrete lines

spectrum H atom

$$
\tilde{v}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n^{2}}\right) \quad \text { Rydberg series }
$$

$$
\mathrm{n}_{1}, \mathrm{n} \text { integers, } \mathrm{n}=\mathrm{n}_{1}+1, \mathrm{n}_{1}+2, \mathrm{n}_{1}+3, \ldots
$$

$$
R_{H}=109,677.581 \mathrm{~cm}^{-1}
$$

Wave-particle duality

- photoelectric effect \Rightarrow light can behave as a particle
- diffraction of light \Rightarrow light can behave as a wave
de Broglie (1924): particles have a wavelength: $\lambda=\frac{h}{p}$
Demonstrated by diffraction of $\mathrm{e}^{-}, \mathrm{He}, \mathrm{H}_{2}$ from crystalline surfaces
e^{-}with $\mathrm{KE}=17 \mathrm{eV}$ has $\lambda=3 \AA$, a typical lattice spacing in a crystal \Rightarrow interference (diffraction)
large objects - baseballs, cars, etc., have de Broglie wavelengths too small to be detected

Diffraction experiments

light incident on a single slit

, well separated peaks when $\lambda \approx a$
$\lambda \gg \mathrm{a}$ - can't see diffraction
double-slit expt. with e^{-}
the e^{-}goes through both slits!!

In 1977 the expt. was done with the He atoms \Rightarrow Each atom goes through both slits!!

Summary:

- energy + oscillators are quantized
- wave-particle duality
- de Broglie relationship
- these ideas paved the way for QM

NOTE: Frequencies of a guitar string are "quantized" (and guitars are clearly Classical)

Quantization comes from boundary conditions

Fourier transforms: (frequency + time) (position, momentum) are conjugate variables

We will come back to these considerations.

