Chapter 14 - Polyatomics

Is H_{3} linear or triangular?

If equilateral, $2^{\text {nd }}$ and $3^{\text {rd }}$ orbitals are degenerate
H_{3}^{+}prefers triangular structure
H_{3}^{-}prefers linear structure
Less obvious whether H_{3} will prefers linear or triangular structure
This is the simplest example of Walsh's rules.

Now consider the bending of an XH_{2} triatomic molecule
BeH_{2} : linear
CH_{2} : bent
$\mathrm{OH}_{2}^{+} \quad$ almost the same geometry as OH_{2}

Note: the text sips over the numbers associated with orbitals derived from core 1s.

This is nonstandard. It is better to account for these AOs when labeling MOs.

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Huckel model

 usual - one p_{z} orbital per C atom (conjugated pi electron systems) can also apply to H_{n} clusters - one s orbital per H atom$$
\begin{aligned}
& \psi=c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n} \\
& \left(\begin{array}{llc}
H_{11}-E & H_{12} \ldots & H_{1 n} \\
H_{21} & H_{22}-E \ldots . H_{2 n} \\
\ldots & \ldots & \ldots \\
H_{n 1} & H_{n 2} & H_{n n}-E
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=0 \quad \longleftarrow \quad \text { Setting } S_{i j}=0,
\end{aligned}
$$

Now set $H_{i i}=\alpha$

$$
\begin{aligned}
H_{i j} & =\beta \longleftarrow \text { nearest neighbor } \\
& =0 \longleftarrow \text { otherwise }
\end{aligned}
$$

$$
\left|\begin{array}{cc}
\alpha-E & \beta \\
\beta & \alpha-E
\end{array}\right|=0 \quad E=\alpha \pm \beta
$$

Model of H_{2} or of pi orbitals of ethylene
H_{3} chain: $\left|\begin{array}{ccc}\alpha-E & \beta & 0 \\ \beta & \alpha-E & \beta \\ 0 & \beta & \alpha-E\end{array}\right|=0 \rightarrow\left\{\begin{array}{llll}- & \alpha-\sqrt{2} \beta & \odot & \odot \\ - & \alpha & \odot & \bullet \\ H & \alpha+\sqrt{2} \beta & \odot & \odot\end{array}\right.$

$$
E_{t o t}=3 \alpha+2 \sqrt{2} \beta
$$

H_{3} equilateral Δ

$$
\left|\begin{array}{ccc}
\alpha-E & \beta & \beta \\
\beta & \alpha-E & \beta \\
\beta & \beta & \alpha-E
\end{array}\right|=0
$$

$\longrightarrow(\alpha-E)^{3}-3 \beta^{2}(\alpha-E)+2 \beta^{3}$
$\longrightarrow E=\alpha+2 \beta, \quad \alpha-\beta, \quad \alpha-\beta$
Actually, when one does the cofactor expansion it is clear that $E=\alpha-\beta$ factorizes out

	linear	equil Δ
H_{3}^{2+}	$\alpha+1.4 \beta$	$\alpha+2 \beta$
H_{3}^{+}	$2 \alpha+2.8 \beta$	$2 \alpha+4 \beta$
H_{3}	$3 \alpha+2.8 \beta$	$3 \alpha+3 \beta$
H_{3}^{-}	$4 \alpha+2.8 \beta$	$4 \alpha+2 \beta$
H_{3}^{-}	$5 \alpha+1.4 \beta$	$5 \alpha+\beta$

Use of symmetry to simplify - use of one symmetry plane

$$
\left.\begin{array}{l}
\psi_{1}=\frac{1}{\sqrt{2}}\left(\varphi_{1}+\varphi_{2}\right) \\
\psi_{2}=\varphi_{3} \\
\psi_{3}=\frac{1}{\sqrt{2}}\left(\varphi_{1}-\varphi_{3}\right)
\end{array}\right\} \begin{cases}H_{11}=\alpha+\beta & H_{12}=\sqrt{2} \beta \\
H_{22}=\alpha & H_{13}=0 \\
H_{33}=\alpha-\beta & H_{23}=0\end{cases}
$$

ψ_{1} and ψ_{2} same symmetry

Naphthalene

use these two symmetry planes to factorize $10 \times 10 \longrightarrow 2(2 \times 2), 2(3 \times 3)$

Butadiene: $4 \times 4 \longrightarrow 2(2 \times 2)$

Connection between symmetry and degeneracies
Need 3-fold or higher symmetry for degeneracies. (360/n) ${ }^{\circ}$ rotation \Rightarrow n-fold symmetry axis

$$
n=3
$$

$n=4$

$$
n=5
$$

$$
n=6
$$

cylinder (infinite-fold)
Note rectangle has only 2 -fold symmetry
all have some
doubly degenerate orbitals

Inscribe polygon inside circle of radius 2β.
Read off where corners touch the circle

Suppose we add another
"dimension"
tetrahedron, cube, icosahedron, etc.

Note: This could be a model for tetrahedral H_{4}, precisely the arrangement of H atoms around the C atom in methane

In methane, these orbitals of the H atoms can only mix with C orbitals of the same symmetry. What mixing is allowed?
the tetrahedron is a good example for using symmetry

two perpendicular symmetry planes

$$
\left[\begin{array}{ll}
x_{1}=\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{2}\right) & H_{11}=\alpha+\beta \\
x_{2}=\frac{1}{\sqrt{2}}\left(\phi_{3}+\phi_{4}\right) & H_{22}=\alpha+\beta \\
H_{12}=2 \beta
\end{array}\right\} \longrightarrow \alpha+3 \beta, \alpha-\beta
$$

Interesting problem to think about
Bonding in dibenzenechromium, a sandwich compound with the Cr between two benzene rings

Resonance delocalization energy per π electron

Antiaromatic - destabilized

Figure 13.18 correction

Actually, one cannot have long range order in 1 dimension, and as a results the bonds alternative long, short, long, which opens up a band gap.

Do you see why?

$$
H=\left(\begin{array}{llllll}
\alpha & \beta & 0 & 0 & 0 & \beta \\
\beta & \alpha & \beta & 0 & 0 & 0 \\
0 & \beta & \alpha & \beta & 0 & 0 \\
0 & 0 & \beta & \alpha & \beta & 0 \\
0 & 0 & 0 & \beta & \alpha & \beta \\
\beta & 0 & 0 & 0 & \beta & \alpha
\end{array}\right)
$$

What happens to the pattern of energy levels when we go from benzene to pyridine? To fluorobenzene? To 1,3,5 trifluorobenzene?

How can we model these chemical substitutions using Huckel theory?

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

$$
p \text {-type } \quad n \text {-type }
$$

Silicon

$$
B \quad P \quad \text { dopants }
$$

