Chapter 14 – Polyatomics

Is H₃ linear or triangular?

If equilateral, 2nd and 3rd orbitals are degenerate

 H_3^+ prefers triangular structure

 H_3^- prefers linear structure

This is the simplest example of Walsh's rules.

Less obvious whether H₃ will prefers linear or **triangular** structure

Now consider the bending of an XH_2 triatomic molecule

 BeH_2 : linear

 CH_2 : bent

 OH_2^+ almost the

same

geometry

as OH₂

Note: the text sips over the numbers associated with orbitals derived from core 1s.

This is nonstandard. It is better to account for these AOs when labeling MOs.

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Huckel model

usual – one p_z orbital per C atom (conjugated pi electron systems) can also apply to H_n clusters – one s orbital per H atom

$$\psi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n$$

Now set
$$H_{ii} = \alpha$$

$$H_{ij} = \beta$$
 — nearest neighbor = 0 — otherwise

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0 \quad E = \alpha \pm \beta$$

Model of H₂ or of pi orbitals of ethylene

 β is a negative quantity

$$H_{3} \text{ chain:} \begin{vmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} = 0 \longrightarrow \begin{cases} - \alpha - \sqrt{2}\beta & \bullet \bullet \bullet \\ + \alpha & \bullet \bullet \bullet \\ + \alpha + \sqrt{2}\beta & \bullet \bullet \bullet \end{cases}$$

$$E_{tot} = 3\alpha + 2\sqrt{2}\beta$$

 H_3 equilateral Δ

$$\begin{vmatrix} \alpha - E & \beta & \beta \\ \beta & \alpha - E & \beta \\ \beta & \beta & \alpha - E \end{vmatrix} = 0$$

$$\longrightarrow (\alpha - E)^3 - 3\beta^2 (\alpha - E) + 2\beta^3$$

$$\longrightarrow E = \alpha + 2\beta, \quad \alpha - \beta, \quad \alpha - \beta$$

Actually, when one does the cofactor expansion it is clear that $E = \alpha - \beta$ factorizes out

linearequil
$$\Delta$$
 H_3^{2+} $\alpha+1.4\beta$ $\alpha+2\beta$ H_3^+ $2\alpha+2.8\beta$ $2\alpha+4\beta$ H_3 $3\alpha+2.8\beta$ $3\alpha+3\beta$

$$H_3$$
 $3\alpha + 2.8\beta$ $3\alpha + 3\beta$
 $H_3^ 4\alpha + 2.8\beta$ $4\alpha + 2\beta$
 $H_3^ 5\alpha + 1.4\beta$ $5\alpha + \beta$

Use of symmetry to simplify – use of one symmetry plane

$$\psi_{1} = \frac{1}{\sqrt{2}}(\varphi_{1} + \varphi_{2})$$

$$\psi_{2} = \varphi_{3}$$

$$\psi_{3} = \frac{1}{\sqrt{2}}(\varphi_{1} - \varphi_{3})$$

$$H_{11} = \alpha + \beta$$

$$H_{12} = \sqrt{2}\beta$$

$$H_{22} = \alpha$$

$$H_{13} = 0$$

$$H_{33} = \alpha - \beta$$

$$H_{23} = 0$$

$$W_{4} \text{ and } W_{5} \text{ same symmetry}$$

 ψ_1 and ψ_2 same symmetry

Naphthalene

use these two symmetry planes to factorize $10 \times 10 \longrightarrow 2(2 \times 2), 2(3 \times 3)$

Butadiene: $4 \times 4 \longrightarrow 2(2 \times 2)$

Connection between symmetry and degeneracies

Need 3-fold or higher symmetry for degeneracies. $(360/n)^{\circ}$ rotation \Rightarrow n-fold symmetry axis

all have some doubly degenerate orbitals

Inscribe polygon inside circle of radius 2β . Read off where corners touch the circle

cylinder (infinite-fold)
Note rectangle has only 2-fold symmetry

Suppose we add another "dimension"

tetrahedron, cube, icosahedron, etc.

Note: This could be a model for tetrahedral H_4 , precisely the arrangement of H atoms around the C atom in methane

In methane, these orbitals of the H atoms can only mix with C orbitals of the same symmetry. What mixing is allowed?

the tetrahedron is a good example for using symmetry

 $x_4 = \frac{1}{\sqrt{2}}(\varphi_1 - \varphi_3)$ $H_{44} = \alpha - \beta$

two perpendicular symmetry planes

$$\begin{array}{|c|c|c|c|}
\hline
 & x_1 = \frac{1}{\sqrt{2}}(\phi_1 + \phi_2) & H_{11} = \alpha + \beta \\
 & x_2 = \frac{1}{\sqrt{2}}(\phi_3 + \phi_4) & H_{22} = \alpha + \beta \\
 & x_3 = \frac{1}{\sqrt{2}}(\phi_1 - \phi_2) & H_{33} = \alpha - \beta
\end{array}$$

Interesting problem to think about

Bonding in dibenzenechromium, a sandwich compound with the *Cr* between two benzene rings

Resonance delocalization energy per π electron

Reference molecule should be linear

Aromatic - stabilized

Antiaromatic - destabilized

Actually, one cannot have long range order in 1 dimension, and as a results the bonds alternative long, short, long, which opens up a band gap.

Do you see why?

$$H = \begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha \end{pmatrix}$$

What happens to the pattern of energy levels when we go from benzene to pyridine? To fluorobenzene? To 1,3,5 trifluorobenzene?

How can we model these chemical substitutions using Huckel theory?

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Silicon

p-type *n*-type

B P dopants