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Note:  We really should be using μ instead of me.

H, D, T have slightly different μ and thus can be distinguished spectroscopically

Radial distribution function → integrate over angular degrees of freedom

[ ]22( ) ( )P r dr r R r dr=



Chapter 10   Many e- atoms
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He atom: in a.u.

cannot separated due to          term

However, it is still useful to use an
approximate wavefunction that does separate
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1
r

( ) ( )1 1 2 2r rψ φ φ=
G G orbital approximation

Simplest approach:  neglect the         term
poor approximation

Better approach:      each e- experiences a potential
from the average charge distribution of the other e-
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φ φ= − + ∫
G G G G Hartree model

N electrons  → N one-electron hamiltonians → {φI, εi}



To proceed further, we must consider e- spin

spin of e- = ½; two components ms = +1/2, ms = -1/2

spin eigenfunctions: 1         
2

1      
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= − ↓
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hiφi = εiφi Effective one 
electron hamiltonian
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α α σ β β σ α β σ
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= ==

Indistinguishability of electrons
wavefunction must be antisymmetric wrt exchange
of two e-

He: [ ]1 1(1) (2) (1) (2) (1) (2)s sψ φ φ α β β α= −
Pauli
exclusion
principle
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In general:
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Slater determinant

Two electrons cannot have all quantum #s the same.

excited
states
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2s

1s

{1s(1)2s(2)+2s(1)1s(2)}(αβ-βα)

{1s(1)2s(2)-(2s(1)1s(2)}αα

{1s(1)2s(2)-2s(1)1s(2)}(αβ+βα)

{1s(1)2s(2)-2s(1)1s(2)}ββ

Singlet, S = 0, Ms=0

Triplet, S = 1, Ms=1, 0, -1

Normally, the three components of the triplet give the same 
energy

Excited triple is energetically below excited singlet



Variational method: approximate wavefunction Φ

H EΦ ≠ Φ

*

*

H d
E

d

τ

τ

Φ Φ
=

Φ Φ
∫
∫

If Φ has a parameter, b,
solve / 0E b∂ ∂ =

example:
3 5 7 9

3 5 7 9

1
2

x x x x x
a a a a a

α
⎛ ⎞⎛ ⎞ ⎛ ⎞

Φ = − + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

for particle-in-box problem with 0  <  x  <  a

The variational parameter is α

Plot of the exact and 
approximate wavefunctions



if α = 0 →
2
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α α

α
≠ = ⇒ = − → =

2

20.125exact
hE
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The energy can never fall below the exact energy

Hartree-Fock Self-Consistent Field method

Φ is taken to be a Slater determinant
parameters in orbitals are varied

21 ( ) ( ) ( )
2

eff
i i i i i i iV r r rφ ε⎡ ⎤− ∇ + =⎢ ⎥⎣ ⎦

depends on orbitals that we are trying to solve for



Guess a set of orbitals

construct 

solve for orbitals + energies

eff
iV

Iterate until energies and orbitals are converged.

( )2 2total i ij ij
i j i

E J Kε
>

= − −∑ ∑

Coulomb
exchange

to remove double counting in 2 i
i

ε∑E

0

empty

ε3
ε2
ε1

filled
IPi = -εI for filled orbitals

EAj = - εj for empty orbitals

Koopmans
theorem



εns <  εnp < εnd, … εns =  εnp = εnd, …
many electron atoms H atom

s has more weight near nucleus than does p which has more weight
near nucleus than d.

deshielding
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   1 2 2                 2 8 10

   1 2 2 3 3      2+8+8=18

He s

Ne s s p

Ar s s p s p
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2 2 5 10

2 2 2 6 2 10

2 3 2 7

5 2 8

[ ]4 3      [ ] 3      [ ] 3

[ ]4 3    [ ]4 3    Zn[ ] 3

[ ]4 3    [ ]4 3

[ ]4 3    [ ]4

4

3

4Sc Ar s d Mn Ar s d Cu Ar s d

Ti Ar s d Fe Ar s d Ar s d

V Ar s d Co Ar s d

Cr Ar s d Ni Ar s d



d5

5 2 4

10 2 9

      4 3     vs.   4 3
      4 3    vs.   4 3

Cr s d s d
Cu s d s d

5.1 3.6 1.5
Na ClE IP EA

eV
Δ = − =

− =

Electronegativity:  X = IP + EA

definition due to Mulliken

Especially stable

Does Na transfer an e-

to Cl?



Many electron atoms:

n, ℓ, mℓ , ms not good quantum #s

, ,

,     

ˆ ˆˆ ˆ,   

i i
i

z z i z z i
i i

L S s

= =

= =

∑ ∑

∑ ∑A

AL S s

L, S, ML, MS are the good quantum #s

Actually, for heavy elements, one needs to add a
spin-orbit coupling term to Ĥ.

2 2ˆ ˆˆ ˆ,  , , z zL L S S no longer commute with Ĥ

Lower case: 
individual orbitals

Upper case: many 
electron state



with spin-orbit coupling, need to use

the good quantum #s are J, MJ

          40J L S z= + >
GG G

�



Terms + States

2

2 1

2 2 2

2 2 2 3 1 1

2 2 3

1      1                   0;  
2

     1                  0;  0

1       1 2 2              1;  
2

       1 2 2             2,1,0;  1,0  ,  ,  

      1 2 2           

H s L S S

He s L S S

B s s p L S P

C s s p L S P D S

N s s p

= = →

= = →

= = →

= = →

4 2 2

2 2 4 3 1 1

2 2 5 2

2 2 6 1

2 2

3 1   2,1,0;  ,   , ,  
2 2

      1 2 2              2,1,0;  1,0  P, , 

1      1 2 2              1;    
2

     1 2 2             0;  0  

      [ ]4 3      4,3

L S S P D

O s s p L S D S

F s s p L S P

Ne s s p L S S

Ti Ar s d L

= = →

= = →

= = →

= = →

= 1 1 1 3 3, 2,1,0;  0,1  , , , , S S D G P F= →

Term symbol 2S+1L

multiplicity



A closer look at spin

He   1s2s

1   2

α β Ms = 0

β α Ms = 0

α α Ms = 1

β β Ms = 1

There must be a
S = 1 state.

S = 1 ⇒ Ms = -1, 0, 1

There must also be an
S = 0 state ⇒ Ms = 0

T

S, T

T

1 (1 2 2 1 )
2

1 (1 2 2 1 )( )
2

1 (1 2 2 1 ))( )
2

1 (1 2 2 1 )
2

T

S

T

T

s s s s

s s s s

s s s s

s s s s

ψ αα

ψ αβ βα

ψ αβ βα

ψ ββ

= −

= + −

= − +

= −



In the absence of a magnetic field, the three triplet components
are degenerate.

The T and S states are different energy ET < Es

term 2S+1L → (2S+1)(2L+1) degeneracy

filled shells → 1S
2

3 1 3 1 3 1

:    1 2 3      3, 2,1,      1,0

     , , , , , 

    21 + 7 + 15 + 5 + 9 + 3 = 60 states

C s p d L S

F F D D P P

= =

2p: 6 choices
3d: 10 choices 60 states



2 2

3 1 3 1 3 1

2 2 3 1 1

:   1 2 2 3           2,1,0;       1,0
                   , ,  , , , 

:   1 2       , , 

C s s p p L S
D D P P S S

C s p P S D

= =

→ what happens to 3D, 1P, 3S?

violate the Pauli exclusion principle.





Note                                           etc. give the same states for each pair.5 2 4 2 8 3 7,  ;  , ; , ; , p p p p d d d d

Hund’s Rules:
1.  The lowest energy term is that with the highest spin

2.  For terms that have the same spin, that with the greatest
L value lies lowest in energy

2 2 3 1 1:   1 2               C s p P D S< <



S. O. Coupling

3 3 3 3
2 1 0                P P P P→

J

Energy level diagram for C atom



Spin-orbit coupling adds a term

generally can ignore for light atoms

    to   L S H∝
GG G
i

3P

3P2

3P1

3P0

Hund’s rule 3:  If a subshell is > half full,
the level with the highest J is lowest in
energy.  If it is < half full, the level with
the lowest J is lowest in energy

3P1 → splits into 3 levels upon application of magnetic field



Return to the 1s2s singlet/triplet problem

singlet 1 2

1 2 1 2
12

1 2 12 12

1 ˆ(1 2 2 1 ) (1 2 2 1 )
2

1 1        (1 2 2 1 ) (1 2 2 1 )
2

        

s s

s s

E s s s s H s s s s d d

E E s s s s s s s s d d
r

E E J K

τ τ

τ τ

= + +

= + + + +

= + + +

∫

∫

12 1 2
12

12 1 2
12

11 2 1 2

11 2 2 1

J s s s sd d
r

K s s s sd d
r

τ τ

τ τ

=

=

∫

∫
1 2

1 2 12 12

1 ˆ(1 2 2 1 ) (1 2 2 1 )
2

         ,

triplet

s s

E s s s s H s s s s d d

E E J K

τ τ= − −

= + + −

∫

J, K are positive

coulomb
exchange

1s2s

S
T

2K12
K12 arises from the
antisymmetrization of ψ.

J


