Hatom

$$
\begin{aligned}
& E=-\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2} n^{2}}, \quad n=1,2,3, \ldots \\
& a_{0}=\frac{\varepsilon_{0} h^{2}}{\pi m_{e} e^{2}}=0.529 \AA
\end{aligned}
$$

$$
E=-\frac{1}{2} \frac{m_{e} e^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2} n^{2} \hbar^{2}} \quad \frac{-1}{2 n^{2}} \quad \text { in a.u. }
$$

atomic units $\quad \hbar=1$

$$
\left.\begin{array}{l}
\hbar=1 \\
e=1 \\
m_{\rho}=1
\end{array}\right\} \quad \begin{aligned}
& \text { energy: } 1 \text { a.u. }=27.211 \mathrm{eV} \\
& \text { distance } 1 \text { a.u. }=0.529 \AA
\end{aligned}
$$

$$
E=\frac{-Z^{2}}{2 n^{2}}
$$

General results for hydrogenic

$$
r=\frac{n^{2} a_{o}}{Z}
$$

Note: We really should be using μ instead of m_{e}.
H, D, T have slightly different μ and thus can be distinguished spectroscopically

Radial distribution function \rightarrow integrate over angular degrees of freedom

$$
P(r) d r=r^{2}[R(r)]^{2} d r
$$

Chapter 10 Many e- atoms

He atom: $\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}\right) \psi=E \psi \quad$ in a.u.
cannot separated due to $\frac{1}{r_{12}}$ term
However, it is still useful to use an
approximate wavefunction that does separate
$\psi=\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right) \quad$ orbital approximation
Simplest approach: neglect the $\frac{1}{r_{12}}$ term
 poor approximation
Better approach: each e- experiences a potential from the average charge distribution of the other e^{-}

$$
\left.V_{1}^{\text {eff }}\left(\vec{r}_{1}\right)=-\frac{2}{r_{1}}+\int \phi_{2}\left(\vec{r}_{2}\right) \frac{1}{r_{12}} \phi_{2}\left(\vec{r}_{2}\right) d \vec{r}_{2} \quad \right\rvert\, \text { Hartree model }
$$

N electrons $\rightarrow \mathrm{N}$ one-electron hamiltonians $\rightarrow\left\{\phi_{1}, \varepsilon_{i}\right\}$

$$
h_{i} \varphi_{i}=\varepsilon_{i} \varphi_{i}
$$

Effective one electron hamiltonian

To proceed further, we must consider e^{-}spin
spin of $\mathrm{e}^{-}=1 / 2$; two components $m_{s}=+1 / 2, m_{s}=-1 / 2$
spin eigenfunctions: $\alpha \quad m_{s}=\frac{1}{2}$

$$
\beta \quad m_{s}=-\frac{1}{2} \downarrow
$$

$\hat{s}^{2} \alpha=\hbar^{2}(s)(s+1) \alpha=\frac{3}{4} \alpha \hbar^{2}$
$\hat{s}^{2} \beta \quad=\frac{3}{4} \beta \hbar^{2}$

$$
\begin{aligned}
& \hat{s}_{z} \alpha=m_{s} \hbar \alpha=\frac{\hbar}{2} \alpha ; \quad \hat{s}_{z} \beta=-\frac{\hbar}{2} \beta \\
& \int \alpha^{*} \alpha d \sigma=\int \beta^{*} \beta d \sigma=1 ; \quad \int \alpha^{*} \beta d \sigma=0
\end{aligned}
$$

Indistinguishability of electrons

 wavefunction must be antisymmetric wrt exchange of two $\mathrm{e}^{-}$$$
\mathrm{He}: \psi=\phi_{15}(1) \phi_{15}(2)[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

$$
\psi=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s(1) \alpha(1) & 1 s(1) \beta(1) \\
1 s(2) \alpha(2) & 1 s(2) \beta(2)
\end{array}\right| \begin{aligned}
& =\frac{1}{\sqrt{2}} 1 s(1) 1 s(2)[\alpha(1) \beta(2)-\beta(1) \alpha(2)] \\
& =\frac{1}{\sqrt{2}} 1 s 1 s(\alpha \beta-\beta \alpha)
\end{aligned}
$$

Two electrons cannot have all quantum \#s the same.

$$
\text { In general: } \psi(1,2, \ldots n)=\frac{1}{\sqrt{n!}}\left|\begin{array}{ccc}
\phi_{1}(1) \alpha(1) & \phi_{1}(1) \beta(1) \ldots \phi_{m}(1) \beta(1) \\
\phi_{1}(2) \alpha(2) & \phi_{1}(2) \beta(2) \ldots \phi_{m}(2) \beta(2) \\
\ldots & \ldots & \ldots \\
\phi_{1}(n) \alpha(n) & \phi_{1}(n) \beta(n) \ldots \phi_{m}(n) \beta(n)
\end{array}\right|
$$

$$
m=n / 2 \text {, if } n \text { even }
$$

$$
=\frac{n+1}{2}, \text { if } n \text { odd }
$$

Slater determinant
excited 2s
states

$$
\left\{\begin{array}{l}
\psi_{1}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \alpha & 2 s \beta \\
1 s \alpha & 2 s \beta
\end{array}\right| \\
\psi_{2}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \alpha & 2 s \alpha \\
1 s \alpha & 2 s \alpha
\end{array}\right| \\
\psi_{3}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \beta & 2 s \beta \\
1 s \beta & 2 s \beta
\end{array}\right| \\
\psi_{4}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \beta & 2 s \alpha \\
1 s \beta & 2 s \alpha
\end{array}\right|
\end{array}\right\}
$$

Normally, the three components of the triplet give the same energy
Excited triple is energetically below excited singlet

Variational method: approximate wavefunction Φ

$$
H \Phi \neq E \Phi
$$

$E=\frac{\int \Phi^{*} H \Phi d \tau}{\int \Phi^{*} \Phi d \tau} \longleftarrow \quad \begin{aligned} & \text { If } \Phi \text { has a parameter, } \mathrm{b}, \\ & \text { solve } \partial E / \partial b=0\end{aligned}$
example: $\Phi=\left(\frac{x}{a}-\frac{x^{3}}{a^{3}}\right)+\alpha\left(\frac{x^{5}}{a^{5}}-\frac{1}{2}\left(\frac{x^{7}}{a^{7}}+\frac{x^{9}}{a^{9}}\right)\right)$
for particle-in-box problem with $0<x<a$

The variational parameter is α

Plot of the exact and approximate wavefunctions

$$
\begin{aligned}
& \text { if } \alpha=0 \rightarrow \quad E=0.203 \frac{h^{2}}{m a^{2}} \\
& \alpha \neq 0 \quad \frac{2 E}{2 \alpha}=0 \Rightarrow \alpha=-6.345 \rightarrow E=0.127 \frac{h^{2}}{m a^{2}} \\
& E_{\text {exact }}=0.125 \frac{h^{2}}{m a^{2}}
\end{aligned}
$$

The energy can never fall below the exact energy

Hartree-Fock Self-Consistent Field method
Φ is taken to be a Slater determinant

> parameters in orbitals are varied

$$
\left[-\frac{1}{2} \nabla_{i}^{2}+V_{i}^{\text {eff }}\left(r_{i}\right)\right] \phi_{i}\left(r_{i}\right)=\varepsilon_{i}\left(r_{i}\right)
$$

Guess a set of orbitals

solve for orbitals + energies

Iterate until energies and orbitals are converged.

many electron atoms
H atom
$\varepsilon_{n s}<\varepsilon_{n p}<\varepsilon_{n d}, \ldots$

$$
\varepsilon_{n s}=\varepsilon_{n p}=\varepsilon_{n d}, \cdots
$$

deshielding

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings
s has more weight near nucleus than does p which has more weight near nucleus than d.

Cr $\quad 4 s 3 d^{5}$ vs. $4 s^{2} 3 d^{4}$
$C u \quad 4 s 3 d^{10}$ vs. $4 s^{2} 3 d^{9}$

Especially stable

Electronegativity: $X=I P+E A$
definition due to Mulliken

Does Na transfer an e^{-} to Cl ?
$\Delta E=I P_{N a}-E A_{C l}=$
$5.1-3.6=1.5 \mathrm{eV}$

Many electron atoms:

n, ℓ, m_{ℓ}, m_{s} not good quantum \#s

$$
\begin{array}{lll}
\boldsymbol{L}=\sum_{i} \ell_{i}, \quad \boldsymbol{S}=\sum \boldsymbol{s}_{i} & \begin{array}{l}
\text { Lower case: } \\
\text { individual orbitals } \\
\text { Upper case: many }
\end{array} \\
\hat{L}_{z}=\sum_{i} \hat{\ell}_{z, i}, \quad \hat{S}_{z}=\sum_{i} \hat{s}_{z, i} & \begin{array}{l}
\text { electron state }
\end{array}
\end{array}
$$

L, S, M_{L}, M_{S} are the good quantum \#s

Actually, for heavy elements, one needs to add a spin-orbit coupling term to \hat{H}.

$\hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{z} \quad$ no longer commute with \hat{H}

H	1s	$L=0 ; S=\frac{1}{2} \rightarrow{ }^{2} S$	Term symbol ${ }^{2 S+1} L$
He	$1 s^{2}$	$L=0 ; S=0 \rightarrow{ }^{1} S$	multiplicity
B	$1 s^{2} 2 s^{2} 2 p$	$L=1 ; S=\frac{1}{2} \rightarrow{ }^{2} P$	
C	$1 s^{2} 2 s^{2} 2 p^{2}$	$L=2,1,0 ; S=1,0 \rightarrow{ }^{3} P,{ }^{1} D,{ }^{1} S$	
N	$1 s^{2} 2 s^{2} 2 p^{3}$	$L=2,1,0 ; S=\frac{3}{2}, \frac{1}{2} \rightarrow{ }^{4} S,{ }^{2} P,{ }^{2} D$	
O	$1 s^{2} 2 s^{2} 2 p^{4}$	$L=2,1,0 ; S=1,0 \rightarrow{ }^{3} \mathrm{P},{ }^{1} D,{ }^{1} S$	
F	$1 s^{2} 2 s^{2} 2 p^{5}$	$L=1 ; S=\frac{1}{2} \rightarrow{ }^{2} P$	
Ne	$1 s^{2} 2 s^{2} 2 p^{6}$	$L=0 ; S=0 \rightarrow{ }^{1} S$	
Ti	$[A r] 4 s^{2} 3 d^{2}$	$L=4,3,2,1,0 ; S=0,1 \rightarrow{ }^{1} S,{ }^{1} D,{ }^{1} G,{ }^{3} P$, ${ }^{3} \mathrm{~F}$

A closer look at spin

In the absence of a magnetic field, the three triplet components are degenerate.

The T and S states are different energy $E_{T}<E_{s}$
term ${ }^{2 S+1} L \rightarrow(2 S+1)(2 L+1)$ degeneracy
filled shells $\rightarrow{ }^{1}$ S

$$
C: \quad 1 s^{2} 2 p 3 d \quad L=3,2,1, \quad S=1,0
$$

$$
{ }^{3} F,{ }^{1} F,{ }^{3} D,{ }^{1} D,{ }^{3} P,{ }^{1} P
$$

$$
21+7+15+5+9+3=60 \text { states }
$$

2p: 6 choices 60 states
$C: 1 s^{2} 2 s^{2} 2 p 3 p \quad L=2,1,0 ; \quad S=1,0$

$$
{ }^{3} D,{ }^{1} D,{ }^{3} P,{ }^{1} P,{ }^{3} S,{ }^{1} S
$$

$C: 1 s^{2} 2 p^{2} \rightarrow{ }^{3} P,{ }^{1} S,{ }^{1} D \quad$ what happens to ${ }^{3} D,{ }^{1} P,{ }^{3} S$?
violate the Pauli exclusion principle.
States and Terms for the $n p^{2}$ Configuration

$m_{t 1}$	m_{12}	$M_{L}=m_{11}+m_{l 2}$	$m_{s 1}$	$m_{s 2}$	$M_{S}=m_{s 1}+m_{s 2}$	Term
-1	-1	-2	1/2	-1/2	0	${ }^{1} \mathrm{D}$
			$(-1 / 2$	$-1 / 2$	-1	${ }^{3} \mathrm{P}$
0	-1	-1	-1/2			${ }^{1} \mathrm{D},{ }^{3} \mathrm{P}$
			1/2	-1/2	0)	
			(1/2	1/2	1	${ }^{3} \mathrm{P}$
0	0	0	1/2	$-1 / 2$	0)	
			$\left(\begin{array}{r}-1 / 2 \\ 1 / 2\end{array}\right.$	1/2	0 \}	${ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}$
1	-1	0		-1/2	0	
			-1/2	-1/2	-1	${ }^{3} \mathrm{P}$
			(1/2	1/2	1	${ }^{3} \mathrm{P}$
			${ }^{-1 / 2}$	-1/2	-1	${ }^{3} \mathrm{P}$
1	0	1	-1/2	1/2	0 \}	${ }^{1} \mathrm{D},{ }^{3} \mathrm{P}$
			1/2	$-1 / 2$	0)	
			(1/2	1/2	1	${ }^{3} \mathrm{P}$
1	1	2	1/2	$-1 / 2$	0	${ }^{1} \mathrm{D}$

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Possible Terms for Indicated Configurations

Electron Configuration	Term Symbol
s^{1}	${ }^{2} \mathrm{~S}$
p^{1}, p^{5}	${ }^{2} \mathrm{P}$
p^{2}, p^{4}	${ }^{1} \mathrm{~S},{ }^{4} \mathrm{D},{ }^{3} \mathrm{P}$
p^{3}	${ }^{2} \mathrm{P},{ }^{2} \mathrm{D},{ }^{4} \mathrm{~S}$
d^{1}, d^{9}	${ }^{2} \mathrm{D}$
d^{2}, d^{8}	${ }^{1} \mathrm{~S},{ }^{1} \mathrm{D},{ }^{1} \mathrm{G},{ }^{3} \mathrm{P},{ }^{3} \mathrm{~F}$
d^{3}, d^{7}	${ }^{4} \mathrm{~F},{ }^{4} \mathrm{P},{ }^{2} \mathrm{H},{ }^{2} \mathrm{G},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{D}(2),{ }^{2} \mathrm{P}$
d^{4}, d^{6}	${ }^{5} \mathrm{D},{ }^{3} \mathrm{H},{ }^{3} \mathrm{G},{ }^{3} \mathrm{~F}(2),{ }^{3} \mathrm{D},{ }^{3} \mathrm{P}(2),{ }^{1} \mathrm{I},{ }^{1} \mathrm{G}(2),{ }^{1} \mathrm{~F},{ }^{4} \mathrm{D}(2)$,
	${ }^{1} \mathrm{~S}(2)$
d^{5}	${ }^{6} \mathrm{~S},{ }^{4} \mathrm{G},{ }^{4} \mathrm{~F},{ }^{4} \mathrm{D},{ }^{4} \mathrm{P},{ }^{2} \mathrm{I},{ }^{2} \mathrm{H},{ }^{2} \mathrm{G}(2),{ }^{2} \mathrm{~F}(2),{ }^{2} \mathrm{D}(3),{ }^{2} \mathrm{P},{ }^{2} \mathrm{~S}$

Note $p, p^{5} ; p^{2}, p^{4} ; d^{2}, d^{8} ; d^{3}, d^{7}$ etc. give the same states for each pair.
Hund's Rules:

1. The lowest energy term is that with the highest spin
2. For terms that have the same spin, that with the greatest L value lies lowest in energy
$C: 1 s^{2} 2 p^{2} \quad{ }^{3} P<{ }^{1} D<{ }^{1} S$
S. O. Coupling

Energy level diagram for C atom

Spin-orbit coupling adds a term $\propto \vec{L} \cdot \vec{S}$ to \vec{H}
generally can ignore for light atoms

Hund's rule 3: If a subshell is \geq half full, the level with the highest J is lowest in energy. If it is < half full, the level with the lowest J is lowest in energy
${ }^{3} P_{1} \rightarrow$ splits into 3 levels upon application of magnetic field

Return to the 1s2s singlet/triplet problem

$$
\begin{aligned}
& E_{\text {singlet }}=\frac{1}{2} \int(1 s 2 s+2 s 1 s) \hat{H}(1 s 2 s+2 s 1 s) d \tau_{1} d \tau_{2} \\
&=E_{1 s}+E_{2 s}+\frac{1}{2} \int(1 s 2 s+2 s 1 s) \frac{1}{r_{12}}(1 s 2 s+2 s 1 s) d \tau_{1} d \tau_{2} \\
&=E_{1 s}+E_{2 s}+J_{12}+K_{12} \\
& \\
& \\
&=J_{12}=\int 1 s 2 s \frac{1}{r_{12}} 1 s 2 s d \tau_{1} d \tau_{2} \\
& E_{\text {triplet }}=\frac{1}{2} \int(1 s 2 s-2 s 1 s) \hat{H}(1 s 2 s-2 s 1 s) d \tau_{1} d \tau_{2} \\
& K_{12}=\int 1 s 2 s \frac{1}{r_{12}} 2 s 1 s d \tau_{1} d \tau_{2} \\
& \text { exchange } J, K \text { are positive }
\end{aligned}
$$

