Due, March 2, 1999

- 1. Sketch the π and π^* MO's of ethylene and label them according to symmetry.
- 2. Sketch the π and π^* orbitals of trans butadiene and label them according to symmetry. (Note that relevant group ls in C_{2h}, given below)
- 3. Consider the CH_3F molecule.

a) Now consider a basis set with an atomic s orbital centered on each the three H atoms. Conduct the symmetry adapted MO's comprised of these s basis functions.

b) Now consider the $2p_x$, $2p_y$, $2p_z$, and 2s orbitals on F. Indicate which of these atomic orbitals mix with the various symmetry-adapted H_{1s} orbitals derived in part a).

4. Consider the F_{C-S} molecule. Assume that it has C_{2v} symmetry. Determine the

number of vibrations of each symmetry type and sketch these (using arrows).

C_{2h}]	E	C_2	Ι	$\sigma_{\rm h}$		
Ag		1	1	1	1	Rz	z^{2}, y^{2}, z^{2}, xy
Bg		1	-1	1	-1	R_x, R_y	xz, yz
A _u		1	1	-1	-1	Z	
Bu		1	-1	-1	1	х, у	