Due, March 2, 1999

1. Sketch the π and π^{*} MO's of ethylene and label them according to symmetry.
2. Sketch the π and π^{*} orbitals of trans butadiene and label them according to symmetry. (Note that relevant group 1s in $\mathrm{C}_{2 \mathrm{~h}}$, given below)
3. Consider the $\mathrm{CH}_{3} \mathrm{~F}$ molecule.
a) Now consider a basis set with an atomic s orbital centered on each the three H atoms. Conduct the symmetry adapted MO's comprised of these s basis functions.
b) Now consider the $2 p_{x}, 2 p_{y}, 2 p_{z}$, and $2 s$ orbitals on F. Indicate which of these atomic orbitals mix with the various symmetry-adapted $\mathrm{H}_{1 \mathrm{~s}}$ orbitals derived in part a).
4. Consider the ${ }_{F^{\prime}}^{\mathrm{F}_{\sim}} \mathrm{C}-\mathrm{s}$ molecule. Assume that it has $\mathrm{C}_{2 \mathrm{v}}$ symmetry. Determine the number of vibrations of each symmetry type and sketch these (using arrows).

$\mathrm{C}_{2 \mathrm{~h}}$	E	C_{2}	I	σ_{h}		
A_{g}	1	1	1	1	R_{z}	$\mathrm{z}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}$
B_{g}	1	-1	1	-1	$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$	xz, yz
A_{u}	1	1	-1	-1	z	
B_{u}	1	-1	-1	1	x, y	

