Due February 11, 1999

- 1. What electronic states can you derive from the following configurations. (Give the term symbols, specifying the angular momentum (L) and spin multiplicity.)
 - a) 1s2p b) $1s^2(3p)^2$ c) $1s^22p3p$
 - d) $1s^22s^22p^63s3d$ e) $1s22s^22p6(3d)^2$

In each case, indicate which state is the lowest in energy.

- 2. For each of the following indicate what J states are possible (*i.e.*, complete the term symbols).
 - a) ${}^{1}D$ b) ${}^{3}P$ c) ${}^{3}S$
 - d) ${}^{4}P$ e) ${}^{2}F$ f) ${}^{1}G$
- 3. a) Calculate the $1s \rightarrow 2p$ transition energy of the He⁺.

b) Positronium consists of an electron (e^{-}) and a positron (e^{+}) . Calculate the ionization potential of this system.

c) What is the Bohr radius of the 1s orbital of positronium?