Due January 28, 1999

1. Confirm that $\mathrm{xe}^{-\mathrm{ax}}$ 2 is solution of the Schröenger Equation for the harmonic oscillator and find a.
2. Calculate $\left\langle x^{2}\right\rangle$ for the ground state of a harmonic oscillator. (See Table 12.1)
3. Show that for a harmonic oscillator the selection rule for IR transitions is $\Delta \mathrm{V}= \pm 1$.
4. Consider the particle-on-a-ring problem. What is the z-component of the angular momentum if $\psi=\mathrm{e}^{3 i \phi}$, if $\psi=\mathrm{ae}^{\mathrm{i} \phi}+\mathrm{be}^{-\mathrm{i} \mathrm{\phi} \phi}$?
5. Problem 12.21 from text.
6. Consider the H atom. Is the electron further from the nucleus on average when it is in a 2 p or 2s orbital?
7. Show that $\hat{\ell}^{2}$ and $\hat{\ell}_{\mathrm{z}}$ commute with one another. Show also that they commute with $\hat{\mathrm{H}}$ for the H atom. Why is this important?
