1. Normalize the following wavefunctions
a) $\psi=\sin \frac{2 \pi \mathrm{x}}{\mathrm{L}}$ on $(0, \mathrm{~L})$
b) $\psi=\mathrm{C}$ on $(-\mathrm{a}, \mathrm{a}), \mathrm{C}=\mathrm{constant}$
c) $\psi=\mathrm{e}^{-\mathrm{x}^{2}}$ on $(-\infty, \infty)$
d) $\psi=\mathrm{e}^{-\alpha \mathrm{r}}$ in 3-dimensional space
2. Consider the wavefunction $\psi=\sqrt{\frac{2}{\mathrm{~L}}} \sin \frac{\pi \mathrm{x}}{\mathrm{L}}$ for a particle in a box of length $\mathrm{L}(0 \leq \mathrm{x} \leq \mathrm{L})$. What is the probability of finding the particle between $\mathrm{x}=\mathrm{L} / 4$ and $3 \mathrm{~L} / 4$? What is the probability of finding it between 0 and $L / 2$?
3. Consider a particle described by the wavefunction $\psi=\mathrm{e}^{\mathrm{ikx}}$. What is the momentum? Would mutliple measurements of the momentum give the same value? Why or why not?
4. Consider the wavefunction $\psi=\mathrm{ae}^{\mathrm{ikx}}+\mathrm{be}^{-\mathrm{ikx}}$. What is the momentum? Would multiple measurements of the momentum give the same value? Why or why not?
5. If an electron is known to be located between $x=0$ and $10 \AA$, what is the uncertainty in its momentum?
6. Consider a conjugated polyene containing 16 C atoms. If you model the π electrons of this system with a one dimensional particle in the box, the ground state would place two electrons in each of the eight lowest energy orbitals. What is the energy gap (in ev) between the $8^{\text {th }}$ and $9^{\text {th }}$ orbitals? What is the frequency of the transition between these two energy levels.
