Due September 23, 1999

1. a) Calculate $\left\langle\mathrm{P}_{\mathrm{x}}{ }^{2}\right\rangle$ for the ground state of the harmonic oscillator?
b) Use this to calculate the uncertainty in P_{x}.
2. For the particle-on-a-ring problem, consider the wave function $\psi=e=-2 i \phi$.
a) What is the z-component of the angular momentum $\left(\hat{\ell}_{z}\right)$?
b) What is the average of the z-component of $\hat{\ell}_{z}$?
3. Show that a harmonic oscillator in its $v=1$ level can reach the $v=0$ and $v=2$ levels upon absorption of infrared light.
4. Consider the $2 \mathrm{P}_{\mathrm{z}}$ orbital of the H atom. Can you know precisely the values of L^{2} and L_{z} for this orbital? Why or why not?
5. Show that the $1 \mathrm{~s} \rightarrow 2 \mathrm{p}$ transition in the H atom is dipole allowed, but that the $1 \mathrm{~s} \rightarrow 2 \mathrm{~s}$ transition is dipole forbidden.
