CHEM 1410 Homework 8 Solutions

TA: Tuguldur T. Odbadrakh

Due date: Nov. 30th, 2015

P11.19

\mathbf{A}

For d^5 :

$$l=2$$
 $m_l = \{-2, -1, 0, 1, 2\} \Rightarrow m_{l_{max}} = -2 - 1 + 0 + 1 + 2 = 0 \Rightarrow S$ $m_s = \frac{5}{2} \Rightarrow \frac{5}{2}(2) + 1 = 6$

The term symbol is then 6S .

\mathbf{B}

For f^3 :

$$l = 3$$
 $m_l = \{-3, -2, -1, 0, 1, 2, 3\} \Rightarrow m_{l_{max}} = 1 + 2 + 3 = 6 \Rightarrow I$ $m_s = \frac{3}{2} \Rightarrow \frac{3}{2}(2) + 1 = 4$

The term symbol is then 4I .

\mathbf{C}

For p^4 :

$$l = 1$$
 $m_l = -1, 0, 1 \implies m_{l_{max}} = 1 + 0 - 1 + 1 = 1 \implies P$
 $m_s = \frac{2}{2} \implies \frac{2}{2}(2) + 1 = 3$

The term symbol is then 3P .

P11.36

Ground-state term symbol for d^5 is 6S from the previous problem. There are 5 m_l values and 2 m_s values, leading to n = 10. There are 5 electrons, leading to m = 5. Then

$$\frac{n!}{m!(n-m)!} = \frac{10!}{5!5!} = \mathbf{252}$$

Since S = 5/2 and L = 0, there are $(5+1)(0+1) = \mathbf{6}$ states.

Q12.21

The electrostatic potential shows a blue region on the H atoms. This means that electrons have left the H atoms, making the H atoms electron donors.

P12.5

 \mathbf{A}

$$BO_{Li_2} = \frac{4-2}{2} = 1$$

 $BO_{Li_2^+} = \frac{3-2}{2} = 0.5$

 \mathbf{B}

$$BO_{C_2} = \frac{8-4}{2} = \mathbf{2}$$

 $BO_{C_2^+} = \frac{7-4}{2} = \mathbf{1.5}$

 \mathbf{C}

$$BO_{O_2} = \frac{10-6}{2} = \mathbf{2}$$

$$BO_{O_2^+} = \frac{10-5}{2} = \mathbf{2.5}$$

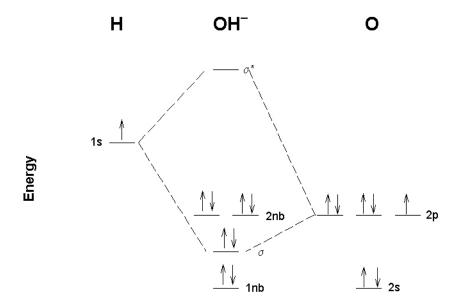
 \mathbf{D}

$$BO_{F_2} = \frac{10 - 8}{2} = 1$$

 $BO_{F_2^-} = \frac{10 - 9}{2} =$ **0.5**

P12.8

\mathbf{A}


- a MO₆ bonding σ
- b MO_4 anti-bonding σ
- c MO_5 bonding π
- d MO_8 anti-bonding π
- e MO₇ bonding π
- f MO₃ bonding σ

\mathbf{B}

MO's 5 and 7 should have equal energies since they are simply the x- and y- components of the π MOs.

P12.19

Anti-bonding LUMO and non-bonding HOMO. This diagram differs from the HF diagram in that the AO energies are shifted up for O, affecting the MO energies. This should not be enough to drastically change the MO energies and ordering.

