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Abstract— Recent breakthroughs in deep learning using auto-
mated measurement of face and head motion have made possi-
ble the first objective measurement of depression severity. While
powerful, deep learning approaches lack interpretability. We
developed an interpretable method of automatically measuring
depression severity that uses barycentric coordinates of facial
landmarks and a Lie-algebra based rotation matrix of 3D head
motion. Using these representations, kinematic features are
extracted, preprocessed, and encoded using Gaussian Mixture
Models (GMM) and Fisher vector encoding. A multi-class SVM
is used to classify the encoded facial and head movement
dynamics into three levels of depression severity. The proposed
approach was evaluated in adults with history of chronic
depression. The method approached the classification accuracy
of state-of-the-art deep learning while enabling clinically and
theoretically relevant findings. The velocity and acceleration
of facial movement strongly mapped onto depression severity
symptoms consistent with clinical data and theory.

I. INTRODUCTION
Many of the symptoms of depression are observable. In de-

pression facial expressiveness [23], [26] and head movement
[12], [18], [14] are reduced. The velocity of head movement
also is slower in depression [14].

Yet, systematic means of using observable behavior to
inform screening and diagnosis of the occurrence and sever-
ity of depression are lacking. Recent advances in computer
vision and machine learning have explored the validity of
automatic measurement of depression severity from video
sequences [1], [28], [31], [8].

Hdibeklioglu and colleagues [8] proposed a multimodal
deep learning based approach to detect depression severity
in participants undergoing treatment for depression. Deep
learning based per-frame coding and per-video Fisher-vector
based coding were used to characterize the dynamics of facial
and head movement. For each modality, selection among
features was performed using combined mutual information,
which improved accuracy relative to blanket selection of all
features regardless of their merit. For individual modalities,
facial and head movement dynamics outperformed vocal
prosody. For combinations, fusing the dynamics of facial
and head movement was more discriminative than head
movement dynamics and more discriminative than facial
movement dynamics plus vocal prosody and head movement
dynamics plus vocal prosody. The proposed deep learning
based method outperformed the state of the art counterparts
for each modality.

A limitation of the deep learning approach is its lack
of interpretability. The dynamics of facial, head, and vocal
prosody were important, but the nature of those changes
during course of depression were occult. From their find-
ings, one could not say whether dynamics were increasing,
decreasing, or varying in some non-linear way. For clinical
scientists and clinicians interested in the mechanisms and
course of depression, interpretable features matter. They want
to know not only presence or severity of depression but how
dynamics vary with occurrence and severity of depression.

Two previous shallow-learning approaches to depression
detection were interpretable but less sensitive to depression
severity. In Alghowinem and colleagues [1], head movements
were tracked by AAMs [25] and modeled by Gaussian
mixture models with seven components. Mean, variance,
and component weights of the learned GMMs were used as
features. And a set of interpretable head pose functionals was
proposed. These included the statistics of head movements
and duration of looking in different directions.

Williamson and his colleagues [31] investigated the spe-
cific changes in coordination, movement, and timing of facial
and vocal signals as potential symptoms for self-reported
BDI (Beck Depression Inventory) scores [2]. They proposed
a multi-scale correlation structure and timing feature sets
from video-based facial action units (AUs [10]) and audio-
based vocal features. The features were combined using
a Gaussian mixture model and extreme learning machine
classifiers to predict BDI scores.

Reduced facial expression is commonly observed in de-
pression and relates to deficits in experiencing positive as
well as negative emotion [24]. Less often, greatly increased
expression occurs. There are referred to as psychomotor
retardation and psychomotor agitation, respectively. We pro-
pose to capture aspects of psychomotor retardation and agi-
tation using the dynamics of facial and head movement. Par-
ticipants were from a clinical trial for treatment of moderate
to severe depression and had history of multiple depressive
episodes. Compared to state-of-the-art deep learning approch
for depression severity assessment, we propose a reliable and
clinically interpretable method of automatically measuring
depression severity from the dynamics of face and head
motion.

To analyze facial movement dynamics separately from
head movement dynamics, facial shape representation would
need to be robust to head pose changes while preserving978-1-5386-2335-0/18/$31.00 c�2018 IEEE



Fig. 1. Overview of the proposed approach.

facial motion information [3], [27], [19], [16]. To achieve
this goal, Kacem and colleagues [20] used the Gram matrix
of facial landmarks to obtain a facial representation that
is invariant to Euclidean transformations (i.e., rotations and
translations). In related work, Begel and colleagues [3] and
Taheri and colleagues [27] used mapping facial landmarks
in Grassmann manifold to achieve an affine-invariance rep-
resentation. These previous efforts yielded to facial shape
representations lying on non-linear manifolds where standard
Euclidean analysis techniques are not straightforward. Based
on our work [19], we propose an efficient representation
for facial shapes through encoding landmark points by
their barycentric coordinates [4]. In addition to the affine-
invariance, the proposed approach has the advantage of lying
on Euclidean space avoiding the non-linearity problem.

Because we are interested in both facial movement dy-
namics and head movement dynamics, the later is encoded
by combining the 3 degrees of freedom of head movement
(i.e., yaw, roll, and pitch angles) in a single rotation matrix
mapped to Lie algebra to overcome the non-linearity of the
space of rotation matrices [29], [30].

To capture changes in the dynamics of head and facial
movement that would reflect the psychomotor retardation of
depressed participants, relevant kinematic features are ex-
tracted (i.e., velocities and accelerations) from each proposed
representation. Gaussian Mixture Models (GMM) combined
with an improved fisher vector encoding are then used to
obtain a single vector representation for each sequence (i.e.,

interview). Finally, a multi-class SVM with a Gaussian kernel
is used to classify the encoded facial and head movement
dynamics into three depression severity levels. The overview
of the proposed approach is shown in Fig. I.

The main contributions of this paper are three:
• An affine-invariant facial shape representation that is

robust to head pose changes through encoding the
landmark points by their barycentric coordinates.

• A natural head pose representation in Lie algebra with
respect to the geometry of the space of head rotations.

• Extraction and classification of kinematic features that
encode well the dynamics of facial and head movements
for the purpose of depression severity level assessment
and are interpretable and consistent with data and theory
in depression.

The rest of the paper is organized as follows: In section II
facial shape representation and head pose representation are
presented. In section III, we describe kinematic features
based on the representations proposed in section II. Sec-
tion IV describes the depression severity level classification
approach. Results and discussions are reported in section V.
In section VI, we conclude and draw some perspectives of
the work.

II. FACIAL SHAPE AND HEAD POSE
REPRESENTATION

We propose an automatic and interpretable approach for
the analysis of facial and head movement dynamics for
depression severity assessment.

A. Automatic Tracking of Facial Landmarks and Head Pose

Zface [17], an automatic, person-independent, generic
approach was used to track the 2D coordinates of 49 facial
landmarks (fiducial points) and 3 degrees of out-of-plane
rigid head movements (i.e., pitch, yaw, and roll) from 2D
videos. Because our interest is the dynamics rather than



the configuration we used the facial and head movement
dynamics for the assessment of depression severity. Facial
movement dynamics is represented using the time series of
the coordinates of the 49 tracked fiducial points. Likewise,
head movement dynamics is represented using the time series
of the 3 degrees of freedom of out-of-plane rigid head
movement.

B. Facial Shape Representation

Facial landmarks may be distorted by head pose changes
that could be approximated by affine transformations. Hence,
filtering out the affine transformations is a convenient way to
eliminate head pose changes. In this section we briefly review
the main definitions of the affine-invariance with barycentric

coordinates and their use in facial shape analysis [19].
Our goal is to study the motion of an ordered list of land-

marks, Z1(t) = (x1(t), y1(t)), . . . , Zn(t) = (xn(t), yn(t)),
in the plane up to the action of an arbitrary affine transfor-
mation. A standard technique is to consider the span of the
columns of the n⇥ 3 time-dependent matrix

G(t) :=

0

B@
x1(t) y1(t) 1

...
...

...
xn(t) yn(t) 1

1

CA .

If for every time t there exists a triplet of landmarks

Fig. 2. Example of the automatically tracked 49 facial landmarks. The
three red points denote the facial landmarks used to form the non-degenerate
triangle required to compute the barycentric coordinates.

forming a non-degenerate triangle the rank of the matrix
G(t) is constantly equal to 3 yielding to affine-invariant rep-
resentations in the non-linear Grassmann manifold of three-
dimensional subspaces in Rn. To overcome the non-linearity
of the space of face representations while filtering out the
affine transformations, we propose to use the barycentric

coordinates.
Assume that Z1(t), Z2(t), and Z3(t) are the vertices of a

non-degenerate triangle for every value of t. In the case of
facial shapes, the right and left corners of the eyes and the tip
of the nose are chosen to form a non-degenerate triangle (see
the red triangle in Fig. 2). For every number i = 4, . . . , n
and every time t we can write

Zi(t) = �i1(t)Z1(t) + �i2(t)Z2(t) + �i3(t)Z3(t) ,

where the numbers �i1(t), �i2(t), and �i3(t) satisfy

�i1(t) + �i2(t) + �i3(t) = 1.

This last condition renders the triplet of barycentric coordi-
nates (�i1(t),�i2(t),�i3(t)) unique. In fact, it is equal to

(xi(t), yi(t), 1)

0

@
x1(t) y1(t) 1
x2(t) y2(t) 1
x3(t) y3(t) 1

1

A
�1

.

If T is an affine transformation of the plane, the barycentric
representation of TZi(t) in terms of the frame given by
TZ1(t), TZ2(t), and TZ3(t) is still (�i1(t),�i2(t),�i3(t)).
This allows us to propose the (n� 3)⇥ 3 matrix

F (t) :=

0

B@
�41(t) �42(t) �43(t)

...
...

...
�n1(t) �n2(t) �n3(t)

1

CA . (1)

as the affine invariant shape representation of the moving
landmarks. It turns out that such representation is closely
related to the standard Grassmannian representation while
avoiding the non-linearity of the space of representations.
Further details about the relationship between the barycentric
and Grassmannian representations can be found in [19]. In
the following, facial shape sequences are represented with the
affine-invariant curve F (t), with dimension m = (n�3)⇥3.

C. Head Pose Representation

Head movements correspond to head nods (i.e., pitch),
head turns (i.e., yaw), and lateral head inclinations (i.e., roll)
(see Fig. 3). Given a time series of the 3 degrees of freedom
of out-of-plane rigid head movement, for every time t the
yaw is defined as a counterclockwise rotation of ↵(t) about
the z-axis. The corresponding time-dependent rotation matrix
is given by

R↵(t) :=

0

@
cos(↵(t)) � sin(↵(t)) 0
sin(↵(t)) cos(↵(t)) 0

0 0 1

1

A .

Pitch is a counterclockwise rotation of �(t) about the y-axis.
The rotation matrix is given by

R�(t) :=

0

@
cos(�(t)) 0 sin(�(t))

0 1 0
� sin(�(t)) 0 cos(�(t))

1

A .

Roll is a counterclockwise rotation of �(t) about the x-axis.
The rotation matrix is given by

R�(t) :=

0

@
1 0 0
0 cos(�(t)) � sin(�(t))
0 sin(�(t)) cos(�(t))

1

A .

A single rotation matrix can be formed by multiplying the
yaw, pitch, and roll rotation matrices to obtain

R↵,�,�(t) = R↵(t)R�(t)R�(t) . (2)

The obtained time-parametrized curve R↵,�,�(t) encodes
head pose at each time t and lie on a non-linear manifold
called the special orthogonal group. The special orthogonal
group SO(3) is a matrix Lie group formed by all rotations
about the origin of three-dimensional Euclidean space R3



Fig. 3. Example of the automatically tracked 3 degrees of freedom of head
pose.

under the operation of composition [5]. The tangent space
at the identity I3 2 SO(3) is a three-dimensional vector
space, called the Lie algebra of SO(3) and is denoted by
so(3). Following [30], [29], we overcome the non-linearity
of the space of our representation (i.e., SO(3)), and map the
curve R↵,�,�(t) from SO(3) to so(3) using the logarithm
map logSO(3) to obtain the three-dimensional curve

H(t) = logSO(3)(I3, R↵,�,�(t)) = log(R↵,�,�(t)) , (3)

lying on so(3). Fore more details about the special orthogo-
nal group, the logarithm map, and the lie algebra, readers are
refereed to [30], [29], [5]. In the following, the time series
of the 3 degrees of freedom of rigid head movement are
represented using the three dimensional curve H(t).

III. KINEMATIC FEATURES AND FISHER VECTOR
ENCODING

To characterize facial and head movement dynamics, we
derive appropriate kinematic features based on their proposed
representations F (t) and H(t), respectively.

A. Kinematic Features

Because videos of interviews varied in length, the ex-
tracted facial and head curves (of different videos) varies
in length. The variation in the obtained curves’ lengths may
introduce distortions in the feature extraction step. To over-
come this limitation, we apply a cubic spline interpolation
to the obtained F (t) and H(t) curves, resulting in smoother,
shorter, and fixed length curves. We set empirically the new
length of the curve given by spline interpolation to 5000
samples for both facial and head curves.

Usually, the number of landmark points given by recent
landmark detectors vary from 40 to 70 points. By building
the barycentric coordinates of the facial shape as explained
in section II-B, this results in high-dimensional facial curves
F (t) with static observations of dimension 120 at least (it can
reach 200 if we have 70 landmark points per face). To reduce
the dimensionality of the facial curve F (t), we perform a
Principal Component Analysis (PCA) that accounts for 98%
of the variance to obtain new facial curves with dimension
20. Then, we compute the velocity VF (t) = @F (t)

@t
and the

acceleration AF (t) =
@
2
F (t)
@t2

from the facial sequence F (t)
after reducing its dimension. Finally, facial shapes, velocities,
and accelerations are concatenated to form the curve

KF (t) = [F (t);VF (t);AF (t)] , (4)

Because head curve H(t) is only three-dimensional no
need for data reduction. Velocities and accelerations are
directly computed from the head sequence H(t) and con-
catenated with head pose values to obtain the final nine-
dimensional curve

KH(t) = [H(t);VH(t);AH(t)] . (5)

The curves KF (t) and KH(t) denote the kinematic fea-
tures over time of the facial and head movements, respec-
tively.

B. Fisher Vector Encoding

Our goal is to obtain a single vector representation from
the kinematic curves KF (t) and KH(t) for depression sever-
ity assessment. Following [8], we used the Fisher Vector
representation using a Gaussian mixture model (GMM)
distributions [32]. Assuming that the observations of a single
kinematic curve are statistically independent, a GMM with
c components is computed for each kinematic curve by
optimizing the maximum likelihood (ML) criterion of the
observations to the c Gaussian distributions. In order to
encode the estimated Gaussian distributions in a single vector
representation, we use the convenient improved fisher vector
encoding which is suitable for large-scale classification prob-
lems [22]. This step is performed for kinematic curves KF (t)
and KH(t), separately. The number of Gaussian distributions
c are chosen by a a leave-one-subject-out cross-validation
and are set to 14 for kinematic facial curves and to 31
for kinematic head curves resulting in fisher vectors with
dimension 14 ⇥ 20 ⇥ 3 ⇥ 2 = 1680 for facial movement
dynamics and vectors with dimension 31⇥ 3⇥ 3⇥ 2 = 558
for head movement dynamics.

IV. ASSESSMENT OF DEPRESSION SEVERITY
LEVEL

After extracting the fisher vectors from the kinematic
curves, the facial and head movements are represented by
compact vectors that describe the dynamics of facial and
head movements, respectively. To reduce redundancy and se-
lect the most discriminative feature set, the Min-Redundancy
Max-Relevance (mRMR) algorithm [21] was used for feature
selection. The set of selected features are then fed to a multi-
class SVM with a Gaussian kernel to classify the extracted
facial and head movement dynamics into different depression
severity levels. Please note that a leave-one-subject-out cross-
validation is performed to choose the number of selected
features by mRMR which is set to 726 for facial movement
dynamics and to 377 for head movement dynamics.

For an optimal use of the information given by the facial
and head movements, depression severity was assessed by
late fusion of separate SVM classifiers. This is done by
multiplying the probabilities si,j , output of the SVM for each



TABLE I
CLASSIFICATION ACCURACY (%) - COMPARISON WITH STATE-OF-THE-ART

Method Modality Accuracy (%) Weighted Kappa

J. Cohn et al. [7] Facial movements 59.5 0.43

S. Alghowinem et al. [1] Head movements 53.0 0.42

Dibeklioglu et al. [9] Facial movements 64.98 0.50
Dibeklioglu et al. [9] Head movements 56.06 0.40

Dibeklioglu et al. [8] Facial movements 72.59 0.62
Dibeklioglu et al. [8] Head movements 65.25 0.51
Dibeklioglu et al. [8] Facial/Head movements 77.77 0.71

Ours Facial movements 66.19 0.60
Ours Head movements 61.43 0.54
Ours Facial/Head movements 70.83 0.65

class j, where i 2 {1, 2} denotes the modality (i.e., facial
and head movements). The class C of each test sample is
determined by

C = argmax
j

2Y

i=1

si,j , j = 1, . . . , nC , (6)

where nC is the number of classes (i.e., depression severity
levels).

V. EVALUATION PROCEDURES

A. Dataset

Fifty-seven depressed participants (34 women, 23 men)
were recruited from a clinical trial for treatment of de-
pression. At the time of the study, all met DSM-4 crite-
ria [11] for Major Depressive Disorder (MDD). Data from
49 participants was available for analysis. Participant loss
was due to change in original diagnosis, severe suicidal
ideation, and methodological reasons (e.g., missing audio
or video). Symptom severity was evaluated on up to four
occasions at 1, 7, 13, and 21 weeks post diagnosis and intake
by four clinical interviewers (the number of interviews per
interviewer varied).

Interviews were conducted using the Hamilton Rating
Scale for Depression (HRSD) [15]. HRSD is a clinician-rated
multiple item questionnaire to measure depression severity
and response to treatment. HRSD scores of 15 or higher are
generally considered to indicate moderate to severe depres-
sion; scores between 8 and 14 indicate mild depression; and
scores of 7 or lower indicate remission [13]. Using these
cut-off scores, we defined three ordinal depression severity
classes: moderate to severe depression, mild depression, and
remission (i.e., recovery from depression). The final sample
was 126 sessions from 49 participants: 56 moderate to
severely depressed, 35 mildly depressed, and 35 remitted (for
a more detailed description of the data please see [8]).

B. Results

We seek to discriminate three levels of depression severity
from facial and head movement dynamics separately and in
combination. To do so, we used leave-One-Subject-Out cross
validation scheme. Performance was evaluated using two
criterion. One was the mean accuracy over the three levels of

TABLE II
CONFUSION MATRIX

Remission Mild Severe
Remission 60.0 31.42 8.57

Mild 20.0 68.57 11.42
Severe 1.78 14.28 83.92

severity. The other was weighted kappa [6]. Weighted kappa
is the proportion of ordinal agreement above what would be
expected to occur by chance [6].

Consistent with prior work [8], average accuracy was
higher for facial movement than for head movement. Facial
movement was 66.19%, and head movement was 61.43%
(see Table. I). When the two modalities were combined,
average accuracy increased to 70.83%.

Misclassification was more common between adjacent
categories (e.g., Mild and Remitted) than between distant
categories (e.g., Remitted and Severe) (Table. II). Highest
accuracy was found for the difference between severe and
mild depression (83.92%).

Evaluation of the system components. To evaluate our
approach to encoding movement dynamics of face and head
movement with alternative representations. For facial move-
ment dynamics, we compared the barycentric representation
with a Procrustes representation. Average accuracy using
Procrustes was 3% lower than that for barycentric represen-
tation (Table. III). For head movements, we compared the
Lie algebra representation to a vector representation formed
by the yaw, roll, and pitch angles. Accuracy decreased by
about 2% in comparison with the proposed approach.

To evaluate whether dimensionality reduction using PCA
together with spline interpolation improves accuracy, we
compared results with and without PCA and spline inter-
polation. Omitting PCA and spline interpolation decreased
accuracy by about 10%.

To evaluate whether mRMR feature selection and choice
of classifier contributed to accuracy, we compared results
with and without use of a feature selection step for both
Multi-SVM with logistic regression classifiers. When mRMR
feature selection was omitted, accuracy decreased by about
8%. Similarly, when logistic regression was used in place
of Multi-SVM, accuracy decreased by about 7%. This result



TABLE III
EVALUATION OF THE STEPS TO THE PROPOSED APPROACH

Facial shapes representation Accuracy (%)
Pose normalization (Procrustes) 63.69

Barycentric coordinates 66.19

Head pose representation Accuracy (%)
Angles head pose representation 59.05

Lie algebra head pose representation 61.43

Impact of spline interpolation Accuracy (%)
Without spline interpolation 60.36
With spline interpolation 70.83

Impact of PCA on facial movements Accuracy (%)
Without PCA 56.19

With PCA 66.19

Impact of feature selection (mRMR) Accuracy (%)
Without feature selection 62.50
With feature selection 70.83

Classifiers Accuracy (%)
Logistic regression 62.02
Multi-class SVM 70.83

was unaffected by choice of kernel.
Thus, use of the any of the proposed alternatives would

have decreased accuracy relative to the proposed method.

C. Interpretation and Discussion

In this section we evaluate the interpretability of the
proposed kinematic features (that is, KF (t) and KH(t)
defined in Eq. 4 and Eq. 5) for depression severity detec-
tion. We compute the l2-norm of velocity and acceleration
intensities for the face (i.e., VF (t) and AF (t)) and head
(i.e., VH(t) and AH(t)) curves for each video. Since each
video is analyzed independently, we compute the histograms
of the velocity and acceleration intensities over 10 samples
(videos) from each level of depression severity. This results
in histograms of 50000 velocity and acceleration intensities
for each depression level.

Fig. 4 shows the histograms of facial and head velocity
(top part) and acceleration (bottom part) intensities. Results
for face are presented in the left panel and those for head in
the right panel. For face, the level of depression severity
is inversely proportional to the velocity and acceleration
intensities. Velocity and acceleration both increased as par-
ticipants improved from severe to mild and then to remitted.
This finding is consistent with data and theory in depression.

Head motion, on the other hand, failed to vary systemati-
cally with change in depression severity (Fig. 4). This finding
was in contrast to previous work. Girard and colleagues
[14] found that head movement velocity increased when
depression severity decreased. A possible reason for this
difference may lie in how head motion was quantified.
Girard [14] quantified head movement separately for pitch
and yaw; whereas we combined pitch, yaw, and also roll.
By combining all three directions of head movement, we
may have obscured the relation between head movement and
depression severity.

The proposed method detected depression severity with
moderate to high accuracy that approaches that of state
of the art [8]. Beyond the state of the art, the proposed
method yields interpretable findings. The proposed dynamic
features strongly mapped onto depression severity. When par-
ticipants were depressed, their overall facial dynamics were
dampened. When depression severity lessened, participants
became more expressive. In remission, expressiveness was
even higher. These findings are consistent with the obser-
vation that psychomotor retardation in depression lessens as
severity decreases. Stated otherwise, people more expressive
with return to normal mood.

It is possible that future work will enable similar
interpretation using deep learning. Efforts toward
intepretable artificial intelligence are underway
(https://www.darpa.mil/program/explainable-artificial-
intelligence). Until that becomes possible, the proposed
approach might be considered. Alternatively, it may be
most informative to combine approaches such as the one
proposed and deep learning.

VI. CONCLUSION AND FUTURE WORK

We proposed a method to measure depression severity
from facial and head movement dynamics. Two representa-
tions were proposed. An affine-invariant barycentric and Lie
algebra representation of facial and head movement dynam-
ics, respectively. The extracted kinematic features revealed
strong association between depression severity and dynamics
and detected severity status with moderate to strong accuracy.
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