A translation dictionary: from On the verge.. to Kramers-Heisenberg

The Fraktur script symbols used by Kramers and Heisenberg can be somewhat off-putting to modern eyes. Herewith, a brief translation dictionary for connecting the notation $\mathrm{K} \& H$ use to the more modern style employed in the On the verge.. paper (part 2). The On the verge.. notation is on the left, $\mathrm{K} \& \mathrm{H}$ on the right. Equation numbers in round brackets, when given, refer to the corresponding reference.

The applied electric field (due to the incoming light):

$$
\begin{equation*}
\vec{E}(t)=\operatorname{Re}(E \exp (2 \pi i \nu t) \hat{x}) \quad \leftrightarrow \quad \mathfrak{F}(t)=\mathrm{R}\left(\mathfrak{F} e^{2 \pi i \nu t}\right) \tag{1}
\end{equation*}
$$

Note that \mathfrak{F} is a general three-vector in $\mathrm{K} \& H$, while we have chosen to consider only plane polarized (in the x-direction) light in On the verge. Consequently, only the displacement (or polarization) in the x-direction $\Delta x(t)$ need be considered. Moreover, only scattered light with the same polarization direction is considered in the latter. In K\&H the fields and amplitudes are left as general three-vectors to allow the consideration of arbitrary polarizations, although this generality is of hardly any import in the final results.

Next, the classical dipole moment (K\&H-"electrical moment") of the radiating electron (where $-e$ is the electron charge)

$$
\begin{equation*}
-e x(t)=-e \sum_{\vec{\tau}} A_{\vec{\tau}} e^{2 \pi i \vec{\tau} \cdot \vec{w}}(88) \quad \leftrightarrow \quad \mathfrak{R}(t)=\sum_{\tau_{1} . . \tau_{s}} \mathfrak{C}_{\tau_{1} . . \tau_{s}} e^{2 \pi i\left(\tau_{1} w_{1}+. . \tau_{s} w_{s}\right)} \tag{7}
\end{equation*}
$$

Modern notation uses Greek nu (resp. omega) for cyclic (resp. angular) frequencies, so

$$
\begin{align*}
\nu_{k}=\frac{\partial H_{0}}{\partial J_{k}} & \leftrightarrow \quad \omega_{k}=\frac{\partial H}{\partial J_{k}}(9) \\
\vec{\tau} \cdot \vec{\nu} & \leftrightarrow \quad \omega=\tau_{1} \omega_{1}+\ldots+\tau_{s} \omega_{s} \equiv \frac{\partial H}{\partial J} \tag{10,11}
\end{align*}
$$

(From this point, the equation numbers refer to the present discussion). In
comparing the non-transient terms in On the verge (100) (multiplied by $-e$ to convert the displacement to the dipole moment) with K\&H (15), we have the following correspondences:

$$
\begin{array}{rll}
-e^{2} E \tau_{l} \frac{\partial A_{\vec{\tau}^{\prime}}}{\partial J_{l}} A_{\vec{\tau}} \frac{-e^{2 \pi i\left(\vec{\tau} \cdot \vec{\nu}+\vec{\tau}^{\prime} \cdot \vec{\nu}+\nu\right) t}}{\vec{\tau} \cdot \vec{\nu}+\nu} & \leftrightarrow & \frac{\partial \mathbb{S}^{\prime}}{\partial J}(\mathfrak{E} \mathfrak{C}) \frac{e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t}}{\omega+\nu} \\
-e^{2} E \tau_{l}^{\prime} \frac{\partial A_{\vec{\tau}}}{\partial J_{l}} A_{\vec{\tau}^{\prime}} \frac{e^{2 \pi i\left(\vec{\tau} \cdot \vec{\nu}+\vec{\tau}^{\prime} \cdot \vec{\nu}+\nu\right) t}}{\vec{\tau} \cdot \vec{\nu}+\nu} & \leftrightarrow & -\mathfrak{S}^{\prime} \frac{\partial \mathfrak{C}}{\partial J^{\prime}} \mathfrak{E} \frac{e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t}}{\omega+\nu} \\
e^{2} E A_{\vec{\tau}} A_{\vec{\tau}^{\prime}} \tau_{k} \frac{\partial \nu_{l}}{\partial J_{k}} \tau_{l}^{\prime} \frac{e^{2 \pi i\left(\vec{\tau} \cdot \vec{\nu}+\vec{\tau}^{\prime} \cdot \vec{\nu}+\nu\right) t}}{(\vec{\tau} \cdot \vec{\nu}+\nu)^{2}} & \leftrightarrow & \mathbb{S}^{\prime}(\mathfrak{E} \mathbb{C}) \frac{\partial \omega^{\prime}}{\partial J} \frac{e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t}}{(\omega+\nu)^{2}} \tag{3}
\end{array}
$$

The right-hand-side of (3) may be re-expressed as follows

$$
\begin{align*}
\mathfrak{C}^{\prime}(\mathfrak{C} \mathbb{C}) \frac{\partial \omega^{\prime}}{\partial J} \frac{e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t}}{(\omega+\nu)^{2}} & =\mathfrak{l}^{\prime}(\mathfrak{G} \mathbb{C}) \frac{\partial \omega}{\partial J^{\prime}} \frac{e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t}}{(\omega+\nu)^{2}} \tag{4}\\
& =-\mathbb{C}^{\prime}(\mathfrak{E} \mathbb{C})\left(\frac{\partial}{\partial J^{\prime}} \frac{1}{\omega+\nu}\right) e^{2 \pi i\left(\omega+\omega^{\prime}+\nu\right) t} \tag{5}
\end{align*}
$$

Adding the right-hand-sides of (1), (2) and (5), and relabelling the summation indices $\tau, \tau^{\prime} \rightarrow \tau^{\prime}, \tau$, we obtain (15) in K\&H. The overall factor of 4 arises from a difference of 2 in the definition of the amplitudes $A_{\vec{\tau}}$ and \mathfrak{l}.

