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1 Introduction

Heisenberg’s breakthrough to matrix mechanics was directly

stimulated by studies of interaction of quantized material

systems with electromagnetic radiation which came to a head

in the Kramers-Heisenberg paper on dispersion theory in

January 1925. In this talk, we will review the important

contributions of Kramers, van Vleck, and Born to this

subject. Important results from classical physics will also be

reviewed: the hope is that the presentation should be as far

as possible comprehensible to an audience familiar with basic

classical mechanics (including Hamilton’s equations),

electromagnetic theory (in particular, dipole radiation), and

elementary quantum theory.
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Lecture 1

• Review of contact transformations, action-angle

variables (example: 1D SHO)

• Classical results for charged oscillators: (i)

emission, (ii) absorption, (iii) polarization

• Correspondence principles (van Vleck) for

emission, absorption (linear oscillator)

• Kramers dispersion formula and correspondence

principle for polarization (linear oscillator)

Lecture 2

• Hamilton-Jacobi perturbation theory for linear

oscillator

• Generalization of polarization results for

multiply-periodic case (van Vleck,Born)

• Formal Correspondence Rule and the Classical

Limit

• Modern derivation of Kramers polarization

formula
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Review of canonical transformations,

action-angle variables

classical Hamiltonian system with phase space coordinates

(qi, pi), i = 1, 2, ..N , Hamiltonian H(pi, qi)

q̇i =
∂H

∂pi
(1)

ṗi = −
∂H

∂qi
(2)

a contact transformation

q′i = q′i(qi, pi, t) (3)

p′i = p′i(qi, pi, t) (4)

is a functional transformation of the phase space coordinates

preserving the form of the Hamiltonian equations:

q̇′i =
∂H ′

∂p′i
(5)

ṗ′i = −
∂H ′

∂q′i
(6)

Hamiltonian equations (1,2,5,6) must hold simultaneously ⇒

variational principle



δ

∫

(
∑

i

piq̇i − H(pi, qi) −
∑

i

p′iq̇
′

i + H ′(p′i, q
′

i))dt = 0 (7)

implies

{
∑

i

piq̇i − H(pi, qi) −
∑

i

p′iq̇
′

i + H ′(p′i, q
′

i)}dt = dF (8)

dependence of F on the 4N + 1 variables (pi, qi, p
′
i, q

′
i, t) can

be reduced to 2N + 1 variables via the transformation

equations (3,4). Write F as F = F (qi, q
′
i, t) then the partial

derivatives of F can be read off directly from (8):

∂F

∂t
= H ′ − H (9)

∂F

∂qi
= pi (10)

∂F

∂q′i
= −p′i (11)

If ∂H′

∂q′

i

= 0 the new coordinates are called “angle” variables,

while the new momenta p′i are time-independent “action

variables”. q̇′i = ∂H′

∂p′

i

= constant ≡ νi leads to a linear

time-dependence of the new coordinates q′i = νit.

conventional notation: p′i → Ji, q′i → wi



Example: 1 dimensional simple harmonic oscillator

Hamiltonian for 1D SHO

H =
1

2m
p2 +

1

2
mω2

0q2 (12)

consider following contact transformation:

F =
1

2
mω0q

2 cot (q′) (13)

which leads to the following relations between old/new

coordinates:

p =
√

2mω0p′ cos (q′) (14)

q =

√

2p′

mω0
sin (q′) (15)

The new Hamiltonian is simply:

H ′ = H = ω0p
′ (16)

so the new coordinate variable q′ is ignorable, as desired.

The Hamiltonian equation for the latter implies

q̇′ =
∂H

∂p′
= ω0 → q′ = ω0t + ε (17)



Instead of the canonically conjugate variables p′, q′ it is usual

to employ rescaled action/angle variables, defined by

J ≡ 2πp′, w ≡
1

2π
q′ (18)

which reduce to J = H/ν0 and w = ν0t + ε (appropriately

redefining the arbitrary phase ε) for our 1D oscillator. The

connection to the terminology “action” variable is easily seen

in this simple example:

J =

∮

pdq (19)

=

∮

mω0

√

2p′

mω0
cos (q′)

√

2p′

mω0
cos (q′)dq′ (20)

=

∫ 2π

0

2p′ cos2 (q′)dq′ (21)

= 2πp′ (22)

The result (15) represents the equation of motion of the

oscillator x(t) = q(t) = D cos (2πν0t) = D cos (2πw)

For the 1D SHO, the amplitude D is a function of the action

variable D =
√

J
πmω0

, but the frequency ν0 is not!



Classical Charged Oscillator: Emission

Classical Oscillator (in vacuo) loses energy (Larmor formula):

P (t) = −
dE

dt
=

2

3

e2

c3
v̇2 (23)

ascribe energy loss to a radiative reaction force given by

Frad =
2e2

3c3
v̈ ≡ mτv̈ ' −mτω2

0v (24)

For ω0τ << 1, equation of motion of oscillator contains

resistive first order term:

ẍ + τω2
0 ẋ + ω2

0x = 0 (25)

Ansatz: x(t) = De−αt, with

α '
1

2
τω2

0 ± iω0 ≡ Γ/2 ± iω0 (26)

Solution: x(t) = De−Γt/2 cos (ω0t)

average power loss from the Larmor formula

−
dE

dt
=

e2

3c3
D2ω4

0 =
16π4e2

3c3
D2ν4

0 (27)

In terms of Γ = τω2
0 (radiative decay constant) equation of

motion (25) can be written

ẍ + Γẋ + ω2
0x = 0 (28)



Classical Charged Oscillator: Absorption

Now immerse oscillator in EM field Ex = E cos (2πνt),

spectral density ρ(ν) (< ... > denotes time average)

1

4π
< ~E2 > =

3

4π
< Ex

2 >= ρ(ν)∆ν (29)

E2 =
8π

3
ρ(ν)∆ν (30)

Oscillator equation of motion:

ẍ + Γẋ + ω2
0x =

eE

m
exp (iωt) ⇒ x(t) = Re

eE

m

exp (iωt)

ω2
0 − ω2 + iΓω

(31)

time average giving the energy absorption rate becomes

< Fappẋ >=< eE cos (ωt)
eE

m
Re

iω exp (iωt)

ω2
0 − ω2 + iΓω

> (32)

Only the cosine part of the complex exponential in (32)

survives in the time average; using (30),< cos2 (ωt) >= 1/2:

< Fappẋ > =
e2E2Γ

2m

ω2

(ω2
0 − ω2)2 + Γ2ω2

(33)

=
4πe2Γ

3m
ρ(

ω

2π
)

ω2

(ω2
0 − ω2)2 + Γ2ω2

∆ω

2π
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Lorentz resonance (33)
ρ(ω)

We’ve assumed Γ << ω0 so line resonance shape highly

peaked −− > use

ε

x2 + ε2
→ πδ(x), ε → 0 (34)

to execute integration over frequencies and compute the total

energy absorption rate:

< Fappẋ > ≈
2e2

3m

∫

ρ(
ω

2π
)Γ

π

Γω
ω2δ(ω2 − ω2

0)dω

=
πe2

3m
ρ(ν0) (35)

This classical formula found (first?) in Planck’s

“Wärmetheorie”



Classical Charged Oscillator: Polarization

The polarization induced in an assembly of charged oscillators

by an applied electric field E cos (ωt) is defined as the dipole

moment per unit volume coherent with the applied field

x-direction. The induced displacement for each oscillator is

just given by

∆x(t) =
eE

m
Re

eiωt

ω2
0 − ω2 + iΓω

so the resulting polarization is (neglecting Γ, valid if we are

off resonance)

P = nosce
eE

m(ω2
0 − ω2)

cos (ωt) = nosc
e2E

4π2m

1

ν2
0 − ν2

cos (ωt)

(36)

Physically more realistic situation, randomly oriented

oscillators, −− > insert 1
3 in the above expression.

NB! Polarization is only first-order in E, while absorption is

second-order. The Hamilton-Jacobi perturbation theory for

absorption (only van Vleck) is much more involved!



Quantum Radiation Theory a la Einstein (1917)

Ingredients: ensemble of quantized material systems

(“atoms”) with states labelled r, s, .., Nr atoms in state r,

ambient electromagnetic field with spectral density ρ(ν)

Bohr frequency condition: νrs = Er−Es

h

Einstein’s analysis gives an average rate of energy emission of

light of frequency νrs for an atom in state r as

dEr→s

dt
= hνrs(Ar→s + Br→sρ(νrs)) (37)

and the rate of energy absorption of light of frequency νrs by

an atom in state s as

dEs→r

dt
= hνrsBs→rρ(νrs) (38)

Einstein’s analysis of the requirements for thermodynamic

equilibrium then yield the critical relations

Br→s = Bs→r =
c3

8πhν3
rs

Ar→s (39)



Correspondence Principle for Emission/Absorption
(SHO)

In correspondence limit, the spontaneous emission rate from

an oscillator in state r to state s = r − 1 should approach the

classical result (27), where for a linear oscillator (a very

special feature!) the mechanical oscillation frequency ν0 is

identical to the frequency of the emitted light νrs:

hνrsAr→s '
16π4e2

3c3
D2

rν4
rs (40)

Ar→s '
16π4e2

3hc3
D2

rν3
rs (41)

where Dr is the amplitude of the oscillator in the emitting

state r. From the Einstein relation (39) this implies a

corresponding result for the B-coefficients:

Br→s = Bs→r =
2π3e2

3h2
D2

r (42)

In the r’th quantized state of the linear oscillator, the action

is p′ = rh̄ so the corresponding amplitude of the quantized

motion becomes

Dqu
r =

√

rh

2π2mν0
(43)



Quantum result (SHO) for the A coefficients becomes

Ar→r−1 =
8π2e2ν2

0r

3mc3
(44)

while the quantum result for the B coeffficients takes the

form

Br→r−1 = Br−1→r =
πe2r

3hmν0
(45)

The classical result
πe2

3m
ρ(ν0) (46)

gives the rate at which a classical charged oscillator gains

energy when immersed in an ambient classical

electromagnetic field.

van Vleck equates this to a “differential absorption rate”: the

rate of energy absorption of the oscillator in state r going to

state r + 1 via (38) minus the “negative absorption” (in

modern terminology, stimulated emission) induced by the field

and causing the transition r to r − 1 (the B term in (37)).



From (45) we therefore have for the differential absorption

rate of an oscillator in state r

dEnet

dt
= hν0(Br→r+1 − Br→r−1)ρ(ν0)

= hν0(Br+1→r − Br→r−1)ρ(ν0)

= hν0(r + 1 − r)
πe2

3hmν0
ρ(ν0)

(Planck!)

=
πe2

3m
ρ(ν0)

Warning! Special features of SHO here!!

1. allowed transitions alter quantum number by ± 1

2. ν0 independent of amplitude, mechanical and radiation

frequencies coincide

3. correspondence holds even at small quantum numbers



Correspondence Principle for Polarization (SHO)

The classical polarization result can be expressed in the

Kramers form for the linear oscillator (as a difference between

absorption and emission terms) by using the correspondence

principle for emission:

Ar+1→r − Ar→r−1 =
8π2e2ν2

0

3mc3
(47)

The classical polarization formula (36) for an oscillator in

state r can then be reexpressed

Pr = 3
noscc

3

32π4
E cos (2πνt){

Ar+1→r

ν2
0(ν2

0 − ν2)
−

Ar→r−1

ν2
0(ν2

0 − ν2)
} (48)

Kramer’s dispersion formula for general multiply periodic

systems is easily guessed:

Pr = 3
noscc

3

32π4
E cos (2πνt)(

∑

s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)

(49)

where the sum over s (resp. t) corresponds to states higher

(resp. lower) than the state r. For SHO, these sums

degenerate to a single term each (with s = r + 1, t = r − 1),

and the difference frequencies νsr, νrt = ν0



Hamilton-Jacobi Perturbation Theory (SHO)

The Hamiltonian for the charged oscillator system is

H =
p2

2m
+

1

2
mω2

0x2 + eEx cos (ωt) = H0 + eEx cos (ωt) (50)

Absent a perturbing field, E = 0, H = H0,

x(t) =
∑

τ=±1

Aτe2πiτν0t, Aτ = A∗

−τ (51)

=
∑

τ

Aτe2πiτw, w ≡ ν0t (52)

J = 2πH0

ω0

and w form an action-angle pair

−J̇ =
∂H0

∂w
= 0 (53)

∂H0

∂J
=

ω0

2π
= ẇ = ν0 (54)

The perturbation in (50) induces time-dependence in the

action variables

−J̇ =
∂H0

∂w
+ eE

∂x

∂w
cos (2πνt) = eE

∂x

∂w
cos (2πνt) (55)

so

J̇ = −πieE
∑

τ

τAτ (e2πi(τw+νt) + e2πi(τw−νt)) (56)



NB: we only need J and w to first order in E

∆J =
eE

2

∑

τ

τAτ{
1 − e2πi(τν0t+νt)

τν0 + ν
+

1 − e2πi(τν0t−νt)

τν0 − ν
} (57)

Next, we need the first order shift in the angle variable w:

ẇ =
∂H0

∂J
+ eE

∂x

∂J
cos (2πνt) (58)

= ν0 +
eE

2

∑

τ

∂Aτ

∂J
(e2πi(τw+νt) + e2πi(τw−νt)) (59)

Integrating from 0 to t, we find the shift in the angle variable

∆w =
ieE

4π

∑

τ

∂Aτ

∂J
{
1 − e2πi(τν0t+νt)

τν0 + ν
+

1 − e2πi(τν0t−νt)

τν0 − ν
}

(60)

The first order shift in the original coordinate variable x(t)

arises from first order shifts in w and in J

∆x =
∑

τ ′

(
∂Aτ ′

∂J
∆J + 2πiτ ′Aτ ′∆w)e2πiτ ′ν0t (61)

=
eE

2

∑

τ,τ ′

(
∂Aτ ′

∂J
τAτ −

∂Aτ

∂J
Aτ ′τ ′)

1 − e2πi(τν0−ν)t

τν0 − ν
e2πiτ ′ν0t

+ (ν → −ν) (62)



For SHO, multiplicity variables τ, τ ′ ± 1: coherent terms come

from the terms highlighted in red and require τ + τ ′ = 0:

∆xcoh =
eE

2

∑

τ

{(
∂A−τ

∂J
τAτ +

∂Aτ

∂J
A−ττ)

e−2πiνt

ν − τν0
+ (−ν)}

=
eE

2

∑

τ

τ(
∂

∂J
|Aτ |

2)(
e−2πiνt

ν − τν0
+

e2πiνt

−ν − τν0
)

Only the cosine terms survive:

∆xcoh = 2eE cos (2πνt)
∂

∂J
(

ν0

ν2 − ν2
0

|Aτ |
2) (63)

Multiply periodic version (van Vleck, Born):

x(t) =
∑

~τ

A~τe2πi~τ ·~w =
∑

~τ ·~ν>0

X~τ cos (2π~τ · ~w)

∆xcoh = eE cos (2πνt)
∑

~τ

~τ · ~∇J (
~τ · ~ν|A~τ |

2

ν2 − (~τ · ~ν)2
)

~τ · ~∇J ≡ τ1
∂

∂J1
+ τ2

∂

∂J2
+ τ3

∂

∂J3

P = Nr
e2

2
E cos (2πνt)

∑

~τ ·~ν>0

~τ · ~∇J (
~τ · ~νX2

~τ

(~τ · ~ν)2 − ν2
)



Formal Correspondence Rule: Recovering the
Classical Limit

Kramers dispersion formula:

Pr =
Nrc

3

32π4
E cos (2πνt)(

∑

s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)

(64)

Sums over s (resp. t) refer to states higher (resp. lower) in

energy than the fixed state r under consideration.

Correspondence limit- take the state r to correspond to very

high quantum numbers (n1, n2, n3), states s, t associated in

symmetrical pairs to central state r as follows:

s → (n1 + τ1, n2 + τ2, n3 + τ3) (65)

t → (n1 − τ1, n2 − τ2, n3 − τ3) (66)

Assume that ~τ · ~ν << ~n · ~ν so transitions s → r → t

correspond to very slight changes in the classical orbitals (and

differences approximate well to derivatives)

Old Quantum theory quantization rule - Ji = nih - leads to a

new formal rule:

δ~τF (~n) ≡ F (~n) − F (~n − ~τ) → h~τ · ~∇JF (67)



Kramers polarization formula can be written

Pr =
Nrc

3

32π4
E cos (2πνt)

∑

~τ

δ~τ (
As→r

ν2
sr(ν

2
sr − ν2)

) (68)

with As→r given by the correspondence principle for emission

As→r =
16π4e2

3hc3
D2

sν3
sr (69)

where D2
s = (X

(s)
~τ )2 + (Y

(s)
~τ )2 + (Z

(s)
~τ )2 is the full vector

amplitude squared for the Fourier component of the classical

path responsible for the transition ~n + ~τ → ~n. Introducing

(67,69) in (68) we obtain

Pr = NrE cos (2πνt)
c3

32π4

16π4e2

3hc3
h

∑

~τ ·~ν>0

~τ · ~∇J (
~τ · ~νD2

s

(~τ · ~ν)2 − ν2
)

= Nr
e2

2
E cos (2πνt)

∑

~τ ·~ν>0

~τ · ~∇J (
~τ · ~ν 1

3D2
s

(~τ · ~ν)2 − ν2
) (70)

With the replacement 1
3D2

s → X2
~τ appropriate for randomly

oriented atoms, (70) becomes identical to the previously

obtained classical formula.



Kramers Dispersion Formula: Modern Derivation

The Kramers dispersion formula is easily derived in modern

time-dependent perturbation theory, and the structure of the

derivation throws light on the crucial role played by the

dispersion formula in the genesis of matrix mechanics, as the

amplitudes are immediately found to be just the matrix

representatives of the position operator.

We consider a quantized charged system (valence electron)

with states labeled by discrete indices r, s, t, ..., and

Hamiltonian

H = H0 + eEx cos (ωt) = H0 + V (t) (71)

Work in the interaction picture; operators and states have

time-dependence

Oint(t) ≡ eiH0t/h̄Oe−iH0t/h̄ (72)

∂

∂t
|r, t >int = −

i

h̄
Vint(t)|r, t >int (73)

To first order in E , the solution of (73) is

|r, t >int = |r, 0 > −
i

h̄

∫ t

0

Vint(τ)dτ |r, 0 >

= |r, 0 > −
i

h̄
eE

∫ t

0

xint(τ) cos (ωτ)|r, 0 > dτ



Electron of charge −e in state r, induced polarization at time

t is the first order contribution (in E) to

int < r, t| − exint(t)|r, t >int:

Pr =
−i

h̄
e2E

∫ t

0

< r|[xint(τ), xint(t)]|r > cos (ωτ)dτ (74)

Write cos (ωτ) = 1
2 (eiωτ + e−iωτ ) and insert a complete set of

eigenstates of the unperturbed Hamiltonian H0

(1 =
∑

s |s >< s|)

Pr =
−ie2E

2h̄

∑

s

∫ t

0

(< r|e
i

h̄
H0τxe−

i

h̄
H0(τ−t)|s >< s|xe−

i

h̄
H0t|r >

− < r|e
i

h̄
H0txe−

i

h̄
H0(t−τ)|s >< s|xe−

i

h̄
H0τ |r >)eiωτdτ

+ (ω → −ω)

=
−ie2E

2h̄

∑

s

∫ t

0

(ei(Er−Es+h̄ω)τ/h̄ei(Es−Er)t/h̄XrsXsr

− ei(Er−Es)t/h̄ei(Es−Er+h̄ω)τ/h̄XrsXsr)dτ + (ω → −ω)

where the matrix elements of the coordinate operator have

now made their appearance: Xrs ≡< r|x|s >



Perform the time integral, keeping only the coherent terms

Pr =
−e2E

2
(
∑

s

XrsXsr

Er − Es + h̄ω
−

∑

s

XrsXsr

Es − Er + h̄ω
)eiωt

+ (ω → −ω) (75)

The terms in (75) proportional to sin (ωt) cancel and we are

left with the real result (defining Er − Es ≡ h̄ωrs)

Pr =
−e2E

h̄

∑

s

(
ωrsXrsXsr

ω2
rs − ω2

−
ωsrXrsXsr

ω2
sr − ω2

) cos (ωt)

=
−2e2E

h̄

∑

s

ωrsXrsXsr

ω2
rs − ω2

cos (ωt) (76)

Parity symmetry implies Xrs = 0 if s = r, and the sum in

(76) can naturally be separated into states s of higher energy

than r, with ωsr > 0, and states t of lower energy, with

ωrt > 0:

Pr =
2e2E

h̄
(
∑

s

ωsrXsrXrs

ω2
sr − ω2

−
∑

t

ωrtXrtXtr

ω2
rt − ω2

) cos (ωt) (77)

This result is valid for any H0 with a discrete spectrum!



Use Correspondence principle for emission

As→r =
16π4e2

3hc3
D2

sν3
sr (78)

and identify D2
s ≡ (Xs

τ )2 + (Y s
τ )2 + (Zs

τ )2 with

3(Xs
τ )2 = 12AτA−τ and the Fourier coefficients Aτ → Xsr,

A−τ → Xrs

As→r =
64π4e2

hc3
ν3

srXsrXrs (79)

whence follows the original form (64) of the dispersion

formula

Pr =
c3

32π4
E cos (ωt)(

∑

s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)

(80)

Of course, the above identification of classical Fourier

components with matrix elements of the position operator is

at the core of Heisenberg’s 1925 breakthrough.



Summary

• The conceptual shift from classical to quantum theory

entails a fundamental alteration of the notion of space of

states: from classical phase space to Hilbert space

• Coupling of an external electromagnetic field to a

quantized material system in a given stationary state

provides a probe of the structure of state space, by

inducing an admixture with all other accessible states:

|r, t >= |r > e−iErt/h̄ →
∑

s

cs|s > e−iEst/h̄

whence the electron displacement (→polarization)

acquires a dependence on difference frequencies:

< r, t|X |r, t >→
∑

s,s′

c∗s′csXs′se
i(E

s′
−Es)t/h̄

• The “doubled” character of dynamical variables in

quantum theory- initially so puzzling from a classical

viewpoint- but leading finally to the matrix mechanical

formulation, can be summarized in the following motto:

CLASSICAL PHASE SPACE < −−− > SQUARE

OF QUANTUM STATE SPACE


